scholarly journals Structural and functional partitioning of bread wheat chromosome 3B

Science ◽  
2014 ◽  
Vol 345 (6194) ◽  
pp. 1249721-1249721 ◽  
Author(s):  
F. Choulet ◽  
A. Alberti ◽  
S. Theil ◽  
N. Glover ◽  
V. Barbe ◽  
...  
2014 ◽  
Vol 15 (12) ◽  
Author(s):  
Josquin Daron ◽  
Natasha Glover ◽  
Lise Pingault ◽  
Sébastien Theil ◽  
Véronique Jamilloux ◽  
...  

Science ◽  
2008 ◽  
Vol 322 (5898) ◽  
pp. 101-104 ◽  
Author(s):  
E. Paux ◽  
P. Sourdille ◽  
J. Salse ◽  
C. Saintenac ◽  
F. Choulet ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 290
Author(s):  
Abdul Kader Alabdullah ◽  
Graham Moore ◽  
Azahara C. Martín

Although most flowering plants are polyploid, little is known of how the meiotic process evolves after polyploidisation to stabilise and preserve fertility. On wheat polyploidisation, the major meiotic gene ZIP4 on chromosome 3B duplicated onto 5B and diverged (TaZIP4-B2). TaZIP4-B2 was recently shown to promote homologous pairing, synapsis and crossover, and suppress homoeologous crossover. We therefore suspected that these meiotic stabilising effects could be important for preserving wheat fertility. A CRISPR Tazip4-B2 mutant was exploited to assess the contribution of the 5B duplicated ZIP4 copy in maintaining pollen viability and grain setting. Analysis demonstrated abnormalities in 56% of meiocytes in the Tazip4-B2 mutant, with micronuclei in 50% of tetrads, reduced size in 48% of pollen grains and a near 50% reduction in grain number. Further studies showed that most of the reduced grain number occurred when Tazip4-B2 mutant plants were pollinated with the less viable Tazip4-B2 mutant pollen rather than with wild type pollen, suggesting that the stabilising effect of TaZIP4-B2 on meiosis has a greater consequence in subsequent male, rather than female gametogenesis. These studies reveal the extraordinary value of the wheat chromosome 5B TaZIP4-B2 duplication to agriculture and human nutrition. Future studies should further investigate the role of TaZIP4-B2 on female fertility and assess whether different TaZIP4-B2 alleles exhibit variable effects on meiotic stabilisation and/or resistance to temperature change.


Genome ◽  
2017 ◽  
Vol 60 (12) ◽  
pp. 1076-1085 ◽  
Author(s):  
M. Niranjana ◽  
Vinod ◽  
J.B. Sharma ◽  
Niharika Mallick ◽  
S.M.S. Tomar ◽  
...  

Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been transferred from Ae. speltoides to bread wheat. In Selection2427, a bread wheat introgresed line with Ae. speltoides as the donor parent, a dominant gene for leaf rust resistance was mapped to the long arm of chromosome 3B (LrS2427). None of the Lr genes introgressed from Ae. speltoides have been mapped to chromosome 3B. Since none of the designated seedling leaf rust resistance genes have been located on chromosome 3B, LrS2427 seems to be a novel gene. Selection2427 showed a unique property typical of gametocidal genes, that when crossed to other bread wheat cultivars, the F1 showed partial pollen sterility and poor seed setting, whilst Selection2427 showed reasonable male and female fertility. Accidental co-transfer of gametocidal genes with LrS2427 may have occurred in Selection2427. Though LrS2427 did not show any segregation distortion and assorted independently of putative gametocidal gene(s), its utilization will be difficult due to the selfish behavior of gametocidal genes.


BMC Genomics ◽  
2018 ◽  
Vol 19 (S3) ◽  
Author(s):  
Elena A. Salina ◽  
Mikhail A. Nesterov ◽  
Zeev Frenkel ◽  
Antonina A. Kiseleva ◽  
Ekaterina M. Timonova ◽  
...  

2019 ◽  
Vol 48 ◽  
pp. 12-19 ◽  
Author(s):  
Zuzana Tulpová ◽  
Ming-Cheng Luo ◽  
Helena Toegelová ◽  
Paul Visendi ◽  
Satomi Hayashi ◽  
...  

1976 ◽  
Vol 18 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Jan Dvořák

Chromosome pairing was studied in a number of hybrids involving a 56-chromosome wheat-Agropyron derivative, PW 327. PW 327 originated from the cross, Triticum aestivum cv. Chinese Spring (Chinese Spring × A. elongatum, 2n = 70). In hybrids between PW 327 and T. aestivum a number of multivalent chromosome associations were formed at metaphase I. These multivalents result from interchanges which occurred among wheat chromosomes 1A, 1D, 2A, 2D, 4D and 6D of PW 327. One chromosome of the Agropyron chromosome set of PW 327 occasionally pairs with wheat chromosome 3B. The rest of the Agropyron chromosomes present in PW 327 do not pair with the chromosomes of T. aestivum. It is proposed that the set of Agropyron chromosomes present in PW 327 is not an intact genome of decaploid A. elongatum but rather a modified synthetic genome combining chromosomes and/or chromosome segments from different genomes of the Agropyron parent. The incorporation of duplication-deletions into synthetic genomes of natural polyploids is discussed and it is shown that the set of Agropyron chromosomes which is present in PW 327 carries at least one such duplication-deletion. Pairing between chromosomes of diploid and decaploid A. elongatum was studied in a 56-chromosome hybrid from a cross between an amphiploid, T. aestivum × A. elongatum (2n = 14), and PW 327. It appeared that at least four chromosomes of these two Agropyrons occasionally paired with each other in this hybrid in which the diploidizing system of wheat was active. The relationship between chromosomes of diploid and decaploid A. elongatum is discussed.


Author(s):  
Francesco Sestili ◽  
Benedetta Margiotta ◽  
Patrizia Vaccino ◽  
Salvatore Moscaritolo ◽  
Debora Giorgi ◽  
...  

A bread wheat line (N11) and a disomic 2D(2R) substitution triticale line have been crossed and backrossed four times. At each step electrophoretic selection for the seeds that possessed, simultaneously, the complete set of high molecular weight glutenin subunits of N11 and the two high molecular weight secalins of rye, present in the 2D(2R) line, was carried out. Molecular cytogenetic analyses of the BC4F5 generation have revealed that the selection carried out had produced a disomic addition line (2n=44). The pair of additional chromosomes consisted of the long arm of chromosome 1R (1RL) from rye fused with the satellite body of the wheat chromosome 6B. Rheological analyses revealed that the dough obtained by the new addition line had higher quality characteristics when compared with the two parents. The role of the two additional high molecular weight secalins, present in the disomic addition line, in influencing improved dough characteristics is discussed.


Sign in / Sign up

Export Citation Format

Share Document