A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide

Science ◽  
2018 ◽  
Vol 361 (6404) ◽  
pp. 777-781 ◽  
Author(s):  
C. Xia ◽  
C. Y. Kwok ◽  
L. F. Nazar

Lithium-oxygen (Li-O2) batteries have attracted much attention owing to the high theoretical energy density afforded by the two-electron reduction of O2 to lithium peroxide (Li2O2). We report an inorganic-electrolyte Li-O2 cell that cycles at an elevated temperature via highly reversible four-electron redox to form crystalline lithium oxide (Li2O). It relies on a bifunctional metal oxide host that catalyzes O–O bond cleavage on discharge, yielding a high capacity of 11 milliampere-hours per square centimeter, and O2 evolution on charge with very low overpotential. Online mass spectrometry and chemical quantification confirm that oxidation of Li2O involves transfer of exactly 4 e–/O2. This work shows that Li-O2 electrochemistry is not intrinsically limited once problems of electrolyte, superoxide, and cathode host are overcome and that coulombic efficiency close to 100% can be achieved.

2021 ◽  
Author(s):  
Christopher Doerrer ◽  
Isaac Capone ◽  
Sudarshan Narayanan ◽  
Junliang Liu ◽  
Christopher Grovenor ◽  
...  

<div><div><div><p>To match the high capacity of metallic anodes, all-solid-state batteries (ASSBs) re- quire high energy density, long-lasting composite cathodes such as Ni-Mn-Co (NMC)- based lithium oxides mixed with a solid-state electrolyte (SSE). However in practice, cathode capacity typically fades due to NMC cracking and increasing NMC/SSE in- terface debonding because of NMC pulverization, which is only partially mitigated by the application of a high cell pressure during cycling. Using smart processing proto- cols we report a single crystal particulate LiNi0.83Mn0.06Co0.11O2 and Li6PS5Cl SSE composite cathode with outstanding discharge capacity of 210 mAh g−1 at 30 °C. A first cycle coulombic efficiency of >85%, and >99% thereafter, was achieved despite a 5.5% volume change during cycling. A near-practical discharge capacity at a high areal capacity of 8.7 mAh cm−2 was obtained using a novel asymmetric anode/cathode cycling pressure of only 2.5 MPa/0.2 MPa.</p></div></div></div>


2021 ◽  
Author(s):  
Christopher Doerrer ◽  
Isaac Capone ◽  
Sudarshan Narayanan ◽  
Junliang Liu ◽  
Christopher Grovenor ◽  
...  

<div><div><div><p>To match the high capacity of metallic anodes, all-solid-state batteries (ASSBs) re- quire high energy density, long-lasting composite cathodes such as Ni-Mn-Co (NMC)- based lithium oxides mixed with a solid-state electrolyte (SSE). However in practice, cathode capacity typically fades due to NMC cracking and increasing NMC/SSE in- terface debonding because of NMC pulverization, which is only partially mitigated by the application of a high cell pressure during cycling. Using smart processing proto- cols we report a single crystal particulate LiNi0.83Mn0.06Co0.11O2 and Li6PS5Cl SSE composite cathode with outstanding discharge capacity of 210 mAh g−1 at 30 °C. A first cycle coulombic efficiency of >85%, and >99% thereafter, was achieved despite a 5.5% volume change during cycling. A near-practical discharge capacity at a high areal capacity of 8.7 mAh cm−2 was obtained using a novel asymmetric anode/cathode cycling pressure of only 2.5 MPa/0.2 MPa.</p></div></div></div>


2010 ◽  
Vol 25 (8) ◽  
pp. 1636-1644 ◽  
Author(s):  
Brian J. Landi ◽  
Cory D. Cress ◽  
Ryne P. Raffaelle

Recent advancements using carbon nanotube electrodes show the ability for multifunctionality as a lithium-ion storage material and as an electrically conductive support for other high capacity materials like silicon or germanium. Experimental data show that replacement of conventional anode designs, which use graphite composites coated on copper foil, with a freestanding silicon-single-walled carbon nanotube (SWCNT) anode, can increase the usable anode capacity by up to 20 times. In this work, a series of calculations were performed to elucidate the relative improvement in battery energy density for such anodes paired with conventional LiCoO2, LiFePO4, and LiNiCoAlO2 cathodes. Results for theoretical flat plate prismatic batteries comprising freestanding silicon-SWCNT anodes with conventional cathodes show energy densities of 275 Wh/kg and 600 Wh/L to be theoretically achievable; this is a 50% improvement over today's commercial cells.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Wang ◽  
Junwei Han ◽  
Debin Kong ◽  
Ying Tao ◽  
Quan-Hong Yang

Abstract Lithium-ion batteries (LIBs), which are high-energy-density and low-safety-risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achieving high energy density and fast-charging performance, the exploitation of simple and low-cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion-accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high-performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemical reaction frameworks for high-capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engineering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee sufficient charge delivery and volume fluctuation buffering inside the electrode during cycling. Some specific feasible assembly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high-capacity carbon-caged noncarbon anodes with volumetric capacities over 2100 mAh cm−3. Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities (both gravimetric and volumetric) and high rate performance.


RSC Advances ◽  
2020 ◽  
Vol 10 (30) ◽  
pp. 17702-17712 ◽  
Author(s):  
Haijun Peng ◽  
Huiqing Fan ◽  
Chenhui Yang ◽  
Yapeng Tian ◽  
Chao Wang ◽  
...  

Sodium-ion intercalated δ-MnO2 nanoflakes are applied in an aqueous rechargeable zinc battery cathode with high energy density and excellent durable stability.


2014 ◽  
Vol 1644 ◽  
Author(s):  
Renate Kellermann ◽  
Dan Taroata ◽  
Martin Schiemann ◽  
Helmut Eckert ◽  
Peter Fischer ◽  
...  

ABSTRACTIn this work, electrochemically recyclable lithium is analyzed as high energy density, large scale storage material for stranded renewable energy in a closed loop. The strongly exothermic reaction of lithium with carbon dioxide (CO2) yields thermal energy directly comparable to the combustion of coal or methane in an oxygen containing atmosphere. The thermal level of the reaction is sufficient for re-electrification in a thermal power plant compatible process.The reaction of single lithium particles, avoiding particle-particle interactions, is compared to the combustion of atomized lithium spray in a CO2 containing atmosphere. Particle temperatures of up to 4000K were found for the reaction of single lithium particles in a CO2, nitrogen (N2), oxygen (O2) and steam gas mixture. Furthermore the combustion of atomized lithium spray in both dry CO2 atmosphere and CO2/steam gas mixture was analyzed. The identified solid reaction products are lithium carbonate, lithium oxide and lithium hydroxide. The formation of carbon monoxide (CO) as gaseous reaction product is demonstrated. Carbon monoxide is a valuable by-product, which could be converted to methanol or gasoline using hydrogen.


Sign in / Sign up

Export Citation Format

Share Document