Shifting habitat mosaics and fish production across river basins

Science ◽  
2019 ◽  
Vol 364 (6442) ◽  
pp. 783-786 ◽  
Author(s):  
Sean R. Brennan ◽  
Daniel E. Schindler ◽  
Timothy J. Cline ◽  
Timothy E. Walsworth ◽  
Greg Buck ◽  
...  

Watersheds are complex mosaics of habitats whose conditions vary across space and time as landscape features filter overriding climate forcing, yet the extent to which the reliability of ecosystem services depends on these dynamics remains unknown. We quantified how shifting habitat mosaics are expressed across a range of spatial scales within a large, free-flowing river, and how they stabilize the production of Pacific salmon that support valuable fisheries. The strontium isotope records of ear stones (otoliths) show that the relative productivity of locations across the river network, as both natal- and juvenile-rearing habitat, varies widely among years and that this variability is expressed across a broad range of spatial scales, ultimately stabilizing the interannual production of fish at the scale of the entire basin.

2020 ◽  
pp. 1-7
Author(s):  
Alfonso Langle-Flores ◽  
Adriana Aguilar Rodríguez ◽  
Humberto Romero-Uribe ◽  
Julia Ros-Cuéllar ◽  
Juan José Von Thaden

Summary Payments for ecosystem services (PES) programmes have been considered an important conservation mechanism to avoid deforestation. These environmental policies act in social and ecological contexts at different spatial scales. We evaluated the social-ecological fit between stakeholders and ecosystem processes in a local PES programme across three levels: social, ecological and social-ecological. We explored collaboration among stakeholders, assessed connectivity between forest units and evaluated conservation activity links between stakeholders and forest units. In addition, to increase programme effectiveness, we classified forest units based on their social and ecological importance. Our main findings suggest that non-governmental organizations occupy brokerage positions between landowners and government in a dense collaboration network. We also found a partial spatial misfit between conservation activity links and the forest units that provide the most hydrological services to Xalapa. We conclude that conservation efforts should be directed towards the middle and high part of the Pixquiac sub-watershed and that the role of non-governmental organizations as mediators should be strengthened to increase the efficiency and effectiveness of the local PES programme.


2021 ◽  
Vol 10 (3) ◽  
pp. 186
Author(s):  
HuiHui Zhang ◽  
Hugo A. Loáiciga ◽  
LuWei Feng ◽  
Jing He ◽  
QingYun Du

Determining the flow accumulation threshold (FAT) is a key task in the extraction of river networks from digital elevation models (DEMs). Several methods have been developed to extract river networks from Digital Elevation Models. However, few studies have considered the geomorphologic complexity in the FAT estimation and river network extraction. Recent studies estimated influencing factors’ impacts on the river length or drainage density without considering anthropogenic impacts and landscape patterns. This study contributes two FAT estimation methods. The first method explores the statistical association between FAT and 47 tentative explanatory factors. Specifically, multi-source data, including meteorologic, vegetation, anthropogenic, landscape, lithology, and topologic characteristics are incorporated into a drainage density-FAT model in basins with complex topographic and environmental characteristics. Non-negative matrix factorization (NMF) was employed to evaluate the factors’ predictive performance. The second method exploits fractal geometry theory to estimate the FAT at the regional scale, that is, in basins whose large areal extent precludes the use of basin-wide representative regression predictors. This paper’s methodology is applied to data acquired for Hubei and Qinghai Provinces, China, from 2001 through 2018 and systematically tested with visual and statistical criteria. Our results reveal key local features useful for river network extraction within the context of complex geomorphologic characteristics at relatively small spatial scales and establish the importance of properly choosing explanatory geomorphologic characteristics in river network extraction. The multifractal method exhibits more accurate extracting results than the box-counting method at the regional scale.


2017 ◽  
Vol 32 (12) ◽  
pp. 2337-2349 ◽  
Author(s):  
Tähti Pohjanmies ◽  
Kyle Eyvindson ◽  
María Triviño ◽  
Mikko Mönkkönen

Author(s):  
Seema Karki ◽  
Michael J. Stewardson ◽  
James Angus Webb ◽  
Keirnan Fowler ◽  
Giri Raj Kattel ◽  
...  

2011 ◽  
Vol 12 (5) ◽  
pp. 913-934 ◽  
Author(s):  
Cédric H. David ◽  
David R. Maidment ◽  
Guo-Yue Niu ◽  
Zong-Liang Yang ◽  
Florence Habets ◽  
...  

Abstract The mapped rivers and streams of the contiguous United States are available in a geographic information system (GIS) dataset called National Hydrography Dataset Plus (NHDPlus). This hydrographic dataset has about 3 million river and water body reaches along with information on how they are connected into networks. The U.S. Geological Survey (USGS) National Water Information System (NWIS) provides streamflow observations at about 20 thousand gauges located on the NHDPlus river network. A river network model called Routing Application for Parallel Computation of Discharge (RAPID) is developed for the NHDPlus river network whose lateral inflow to the river network is calculated by a land surface model. A matrix-based version of the Muskingum method is developed herein, which RAPID uses to calculate flow and volume of water in all reaches of a river network with many thousands of reaches, including at ungauged locations. Gauges situated across river basins (not only at basin outlets) are used to automatically optimize the Muskingum parameters and to assess river flow computations, hence allowing the diagnosis of runoff computations provided by land surface models. RAPID is applied to the Guadalupe and San Antonio River basins in Texas, where flow wave celerities are estimated at multiple locations using 15-min data and can be reproduced reasonably with RAPID. This river model can be adapted for parallel computing and although the matrix method initially adds a large overhead, river flow results can be obtained faster than with the traditional Muskingum method when using a few processing cores, as demonstrated in a synthetic study using the upper Mississippi River basin.


2018 ◽  
Vol 13 (5) ◽  
pp. 054020 ◽  
Author(s):  
Jiangxiao Qiu ◽  
Stephen R Carpenter ◽  
Eric G Booth ◽  
Melissa Motew ◽  
Samuel C Zipper ◽  
...  

Silva Fennica ◽  
2020 ◽  
Vol 54 (4) ◽  
Author(s):  
Matti Katila ◽  
Tuomas Rajala ◽  
Annika Kangas

Since the 1990’s, forest resource maps and small area estimates have been produced by combining national forest inventory (NFI) field plot data, optical satellite images and numerical map data using a non-parametric -nearest neighbour method. In Finland, thematic maps of forest variables have been produced by the means of multi-source NFI (MS-NFI) for eight to ten times depending on the geographical area, but the resulting time series have not been systematically utilized. The objective of this study was to explore the possibilities of the time series for monitoring the key ecosystem condition indicators for forests. To this end, a contextual Mann-Kendall (CMK) test was applied to detect trends in time-series of two decades of thematic maps. The usefulness of the observed trends may depend both on the scale of the phenomena themselves and the uncertainties involved in the maps. Thus, several spatial scales were tested: the MS-NFI maps at 16 × 16 m pixel size and units of 240 × 240 m, 1200 × 1200 m and 12 000 × 12 000 m aggregated from the MS-NFI map data. The CMK test detected areas of significant increasing trends of mean volume on both study sites and at various unit sizes except for the original thematic map pixel size. For other variables such as the mean volume of tree species groups, the proportion of broadleaved tree species and the stand age, significant trends were mostly found only for the largest unit size, 12 000 × 12 000 m. The multiple testing corrections decreased the amount of significant -values from the CMK test strongly. The study showed that significant trends can be detected enabling indicators of ecosystem services to be monitored from a time-series of satellite image-based thematic forest maps.k22222p


Sign in / Sign up

Export Citation Format

Share Document