scholarly journals Assessing local trends in indicators of ecosystem services with a time series of forest resource maps

Silva Fennica ◽  
2020 ◽  
Vol 54 (4) ◽  
Author(s):  
Matti Katila ◽  
Tuomas Rajala ◽  
Annika Kangas

Since the 1990’s, forest resource maps and small area estimates have been produced by combining national forest inventory (NFI) field plot data, optical satellite images and numerical map data using a non-parametric -nearest neighbour method. In Finland, thematic maps of forest variables have been produced by the means of multi-source NFI (MS-NFI) for eight to ten times depending on the geographical area, but the resulting time series have not been systematically utilized. The objective of this study was to explore the possibilities of the time series for monitoring the key ecosystem condition indicators for forests. To this end, a contextual Mann-Kendall (CMK) test was applied to detect trends in time-series of two decades of thematic maps. The usefulness of the observed trends may depend both on the scale of the phenomena themselves and the uncertainties involved in the maps. Thus, several spatial scales were tested: the MS-NFI maps at 16 × 16 m pixel size and units of 240 × 240 m, 1200 × 1200 m and 12 000 × 12 000 m aggregated from the MS-NFI map data. The CMK test detected areas of significant increasing trends of mean volume on both study sites and at various unit sizes except for the original thematic map pixel size. For other variables such as the mean volume of tree species groups, the proportion of broadleaved tree species and the stand age, significant trends were mostly found only for the largest unit size, 12 000 × 12 000 m. The multiple testing corrections decreased the amount of significant -values from the CMK test strongly. The study showed that significant trends can be detected enabling indicators of ecosystem services to be monitored from a time-series of satellite image-based thematic forest maps.k22222p

2018 ◽  
Vol 10 (11) ◽  
pp. 1724 ◽  
Author(s):  
Eileen Helmer ◽  
Thomas Ruzycki ◽  
Barry Wilson ◽  
Kirk Sherrill ◽  
Michael Lefsky ◽  
...  

We mapped native, endemic, and introduced (i.e., exotic) tree species counts, relative basal areas of functional groups, species basal areas, and forest biomass from forest inventory data, satellite imagery, and environmental data for Puerto Rico and the Virgin Islands. Imagery included time series of Landsat composites and Moderate Resolution Imaging Spectroradiometer (MODIS)-based phenology. Environmental data included climate, land-cover, geology, topography, and road distances. Large-scale deforestation and subsequent forest regrowth are clear in the resulting maps decades after large-scale transition back to forest. Stand age, climate, geology, topography, road/urban locations, and protection are clearly influential. Unprotected forests on more accessible or arable lands are younger and have more introduced species and deciduous and nitrogen-fixing basal areas, fewer endemic species, and less biomass. Exotic species are widespread—except in the oldest, most remote forests on the least arable lands, where shade-tolerant exotics may persist. Although the maps have large uncertainty, their patterns of biomass, tree species diversity, and functional traits suggest that for a given geoclimate, forest age is a core proxy for forest biomass, species counts, nitrogen-fixing status, and leaf longevity. Geoclimate indicates hard-leaved species commonness. Until global wall-to-wall remote sensing data from specialized sensors are available, maps from multispectral image time series and other predictor data should help with running ecosystem models and as sustainable development indicators. Forest attribute models trained with a tree species ordination and mapped with nearest neighbor substitution (Phenological Gradient Nearest Neighbor method, PGNN) yielded larger correlation coefficients for observed vs. mapped tree species basal areas than Cubist regression tree models trained separately on each species. In contrast, Cubist regression tree models of forest structural and functional attributes yielded larger such correlation coefficients than the ordination-trained PGNN models.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Nadja K. Simons ◽  
María R. Felipe-Lucia ◽  
Peter Schall ◽  
Christian Ammer ◽  
Jürgen Bauhus ◽  
...  

Abstract Background Forests perform various important ecosystem functions that contribute to ecosystem services. In many parts of the world, forest management has shifted from a focus on timber production to multi-purpose forestry, combining timber production with the supply of other forest ecosystem services. However, it is unclear which forest types provide which ecosystem services and to what extent forests primarily managed for timber already supply multiple ecosystem services. Based on a comprehensive dataset collected across 150 forest plots in three regions differing in management intensity and species composition, we develop models to predict the potential supply of 13 ecosystem services. We use those models to assess the level of multifunctionality of managed forests at the national level using national forest inventory data. Results Looking at the potential supply of ecosystem services, we found trade-offs (e.g. between both bark beetle control or dung decomposition and both productivity or soil carbon stocks) as well as synergies (e.g. for temperature regulation, carbon storage and culturally interesting plants) across the 53 most dominant forest types in Germany. No single forest type provided all ecosystem services equally. Some ecosystem services showed comparable levels across forest types (e.g. decomposition or richness of saprotrophs), while others varied strongly, depending on forest structural attributes (e.g. phosphorous availability or cover of edible plants) or tree species composition (e.g. potential nitrification activity). Variability in potential supply of ecosystem services was only to a lesser extent driven by environmental conditions. However, the geographic variation in ecosystem function supply across Germany was closely linked with the distribution of main tree species. Conclusions Our results show that forest multifunctionality is limited to subsets of ecosystem services. The importance of tree species composition highlights that a lack of multifunctionality at the stand level can be compensated by managing forests at the landscape level, when stands of complementary forest types are combined. These results imply that multi-purpose forestry should be based on a variety of forest types requiring coordinated planning across larger spatial scales.


2020 ◽  
pp. 1-7
Author(s):  
Alfonso Langle-Flores ◽  
Adriana Aguilar Rodríguez ◽  
Humberto Romero-Uribe ◽  
Julia Ros-Cuéllar ◽  
Juan José Von Thaden

Summary Payments for ecosystem services (PES) programmes have been considered an important conservation mechanism to avoid deforestation. These environmental policies act in social and ecological contexts at different spatial scales. We evaluated the social-ecological fit between stakeholders and ecosystem processes in a local PES programme across three levels: social, ecological and social-ecological. We explored collaboration among stakeholders, assessed connectivity between forest units and evaluated conservation activity links between stakeholders and forest units. In addition, to increase programme effectiveness, we classified forest units based on their social and ecological importance. Our main findings suggest that non-governmental organizations occupy brokerage positions between landowners and government in a dense collaboration network. We also found a partial spatial misfit between conservation activity links and the forest units that provide the most hydrological services to Xalapa. We conclude that conservation efforts should be directed towards the middle and high part of the Pixquiac sub-watershed and that the role of non-governmental organizations as mediators should be strengthened to increase the efficiency and effectiveness of the local PES programme.


Author(s):  
Jia-Rong Yeh ◽  
Chung-Kang Peng ◽  
Norden E. Huang

Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal’s complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease.


2021 ◽  
Author(s):  
Santiago Duarte ◽  
Gerald Corzo ◽  
Germán Santos

<p>Bogotá’s River Basin, it’s an important basin in Cundinamarca, Colombia’s central region. Due to the complexity of the dynamical climatic system in tropical regions, can be difficult to predict and use the information of GCMs at the basin scale. This region is especially influenced by ENSO and non-linear climatic oscillation phenomena. Furthermore, considering that climatic processes are essentially non-linear and possibly chaotic, it may reduce the effectiveness of downscaling techniques in this region. </p><p>In this study, we try to apply chaotic downscaling to see if we could identify synchronicity that will allow us to better predict. It was possible to identify clearly the best time aggregation that can capture at the best the maximum relations between the variables at different spatial scales. Aside this research proposes a new combination of multiple attractors. Few analyses have been made to evaluate the existence of synchronicity between two or more attractors. And less analysis has considered the chaotic behaviour in attractors derived from climatic time series at different spatial scales. </p><p>Thus, we evaluate general synchronization between multiple attractors of various climate time series. The Mutual False Nearest Neighbours parameter (MFNN) is used to test the “Synchronicity Level” (existence of any type of synchronization) between two different attractors. Two climatic variables were selected for the analysis: Precipitation and Temperature. Likewise, two information sources are used: At the basin scale, local climatic-gauge stations with daily data and at global scale, the output of the MPI-ESM-MR model with a spatial resolution of 1.875°x1.875° for both climatic variables (1850-2005). In the downscaling process, two RCP (Representative Concentration Pathways)  scenarios are used, RCP 4.5 and RCP 8.5.</p><p>For the attractor’s reconstruction, the time-delay is obtained through the  Autocorrelation and the Mutual Information functions. The False Nearest Neighbors method (FNN) allowed finding the embedding dimension to unfold the attractor. This information was used to identify deterministic chaos at different times (e.g. 1, 2, 3 and 5 days) and spatial scales using the Lyapunov exponents. These results were used to test the synchronicity between the various chaotic attractor’s sets using the MFNN method and time-delay relations. An optimization function was used to find the attractor’s distance relation that increases the synchronicity between the attractors.  These results provided the potential of synchronicity in chaotic attractors to improve rainfall and temperature downscaling results at aggregated daily-time steps. Knowledge of loss information related to multiple reconstructed attractors can provide a better construction of downscaling models. This is new information for the downscaling process. Furthermore, synchronicity can improve the selection of neighbours for nearest-neighbours methods looking at the behaviour of synchronized attractors. This analysis can also allow the classification of unique patterns and relationships between climatic variables at different temporal and spatial scales.</p>


2018 ◽  
Vol 285 (1885) ◽  
pp. 20181240 ◽  
Author(s):  
Xiaojuan Liu ◽  
Stefan Trogisch ◽  
Jin-Sheng He ◽  
Pascal A. Niklaus ◽  
Helge Bruelheide ◽  
...  

Forest ecosystems are an integral component of the global carbon cycle as they take up and release large amounts of C over short time periods (C flux) or accumulate it over longer time periods (C stock). However, there remains uncertainty about whether and in which direction C fluxes and in particular C stocks may differ between forests of high versus low species richness. Based on a comprehensive dataset derived from field-based measurements, we tested the effect of species richness (3–20 tree species) and stand age (22–116 years) on six compartments of above- and below-ground C stocks and four components of C fluxes in subtropical forests in southeast China. Across forest stands, total C stock was 149 ± 12 Mg ha −1 with richness explaining 28.5% and age explaining 29.4% of variation in this measure. Species-rich stands had higher C stocks and fluxes than stands with low richness; and, in addition, old stands had higher C stocks than young ones. Overall, for each additional tree species, the total C stock increased by 6.4%. Our results provide comprehensive evidence for diversity-mediated above- and below-ground C sequestration in species-rich subtropical forests in southeast China. Therefore, afforestation policies in this region and elsewhere should consider a change from the current focus on monocultures to multi-species plantations to increase C fixation and thus slow increasing atmospheric CO 2 concentrations and global warming.


Koedoe ◽  
2015 ◽  
Vol 57 (1) ◽  
Author(s):  
Casparus J. Crous ◽  
James S. Pryke ◽  
Michael J. Samways

In South Africa, much of the forest biome is vulnerable to human-induced disturbance. The forest-dwelling butterfly Charaxes xiphares occidentalis is naturally confined to a small forest region in the south-western Cape, South Africa. Most of the remaining habitat of this species is within a fragmented agricultural matrix. Furthermore, this geographical area is also heavily invaded by alien plants, especially Acacia mearnsii. We investigated how C. x. occidentalis behaviourally responds to different habitat conditions in the landscape. We were particularly interested in touring, patrolling and settling behaviour as a conservation proxy for preference of a certain habitat configuration in this agricultural matrix. Remnant forest patches in the agricultural matrix showed fewer behavioural incidents than in a reference protected area. Moreover, dense stands of A. mearnsii negatively influenced the incidence and settling pattern of this butterfly across the landscape, with fewer tree settlings associated with more heavily invaded forest patches. This settling pattern was predominantly seen in female butterflies. We also identified specific trees that were settled upon for longer periods by C. x. occidentalis. Distance to a neighbouring patch and patch size influenced behavioural incidences, suggesting that further patch degradation and isolation could be detrimental to this butterfly. Conservation implications: We highlight the importance of clearing invasive tree species from vulnerable forest ecosystems and identify key tree species to consider in habitat conservation and rehabilitation programmes for this butterfly. We also suggest retaining as much intact natural forest as possible. This information should be integrated in local biodiversity management plans.


PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0147004 ◽  
Author(s):  
Sofia Bäcklund ◽  
Mari Jönsson ◽  
Joachim Strengbom ◽  
Andreas Frisch ◽  
Göran Thor

Sign in / Sign up

Export Citation Format

Share Document