scholarly journals A measurement of the wind speed on a brown dwarf

Science ◽  
2020 ◽  
Vol 368 (6487) ◽  
pp. 169-172 ◽  
Author(s):  
Katelyn. N. Allers ◽  
Johanna M. Vos ◽  
Beth A. Biller ◽  
Peter. K. G. Williams

Zonal (latitudinal) winds dominate the bulk flow of planetary atmospheres. For gas giant planets such as Jupiter, the motion of clouds can be compared with radio emissions from the magnetosphere, which is connected to the planet’s interior, to determine the wind speed. In principle, this technique can be applied to brown dwarfs and/or directly imaged exoplanets if periods can be determined for both the infrared and radio emissions. We apply this method to measure the wind speeds on the brown dwarf 2MASS J10475385+2124234. The difference between the radio period of 1.751 to 1.765 hours and infrared period of 1.741 ± 0.007 hours implies a strong wind (+650 ± 310 meters per second) proceeding eastward. This could be due to atmospheric jet streams and/or low frictional drag at the bottom of the atmosphere.

2017 ◽  
Vol 32 (6) ◽  
pp. 2217-2227 ◽  
Author(s):  
Siri Sofie Eide ◽  
John Bjørnar Bremnes ◽  
Ingelin Steinsland

Abstract In this paper, probabilistic wind speed forecasts are constructed based on ensemble numerical weather prediction (NWP) forecasts for both wind speed and wind direction. Including other NWP variables in addition to the one subject to forecasting is common for statistical calibration of deterministic forecasts. However, this practice is rarely seen for ensemble forecasts, probably because of a lack of methods. A Bayesian modeling approach (BMA) is adopted, and a flexible model class based on splines is introduced for the mean model. The spline model allows both wind speed and wind direction to be included nonlinearly. The proposed methodology is tested for forecasting hourly maximum 10-min wind speeds based on ensemble forecasts from the European Centre for Medium-Range Weather Forecasts at 204 locations in Norway for lead times from +12 to +108 h. An improvement in the continuous ranked probability score is seen for approximately 85% of the locations using the proposed method compared to standard BMA based on only wind speed forecasts. For moderate-to-strong wind the improvement is substantial, while for low wind speeds there is generally less or no improvement. On average, the improvement is 5%. The proposed methodology can be extended to include more NWP variables in the calibration and can also be applied to other variables.


2006 ◽  
Vol 7 (5) ◽  
pp. 984-994 ◽  
Author(s):  
Konosuke Sugiura ◽  
Tetsuo Ohata ◽  
Daqing Yang

Abstract Intercomparison of solid precipitation measurement at Barrow, Alaska, has been carried out to examine the catch characteristics of various precipitation gauges in high-latitude regions with high winds and to evaluate the applicability of the WMO precipitation correction procedures. Five manual precipitation gauges (Canadian Nipher, Hellmann, Russian Tretyakov, U.S. 8-in., and Wyoming gauges) and a double fence intercomparison reference (DFIR) as an international reference standard have been installed. The data collected in the last three winters indicates that the amount of solid precipitation is characteristically low, and the zero-catch frequency of the nonshielded gauges is considerably high, 60%–80% of precipitation occurrences. The zero catch in high-latitude high-wind regions becomes a significant fraction of the total precipitation. At low wind speeds, the catch characteristics of the gauges are roughly similar to the DFIR, although it is noteworthy that the daily catch ratios decreased more rapidly with increasing wind speed compared to the WMO correction equations. The dependency of the daily catch ratios on air temperature was confirmed, and the rapid decrease in the daily catch ratios is due to small snow particles caused by the cold climate. The daily catch ratio of the Wyoming gauge clearly shows wind-induced losses. In addition, the daily catch ratios are considerably scattered under strong wind conditions due to the influence of blowing snow. This result suggests that it is not appropriate to extrapolate the WMO correction equations for the shielded gauges in high-latitude regions for high wind speed of over 6 m s−1.


2018 ◽  
Author(s):  
Christoph Schlager ◽  
Gottfried Kirchengast ◽  
Juergen Fuchsberger ◽  
Alexander Kann ◽  
Heimo Truhetz

Abstract. Empirical high-resolution surface wind fields, automatically generated by a weather diagnostic application, the WegenerNet Wind Product Generator (WPG), were intercompared with wind field analysis data from the Integrated Nowcasting through Comprehensive Analysis (INCA) system and with dynamical climate model wind field data from the non-hydrostatic climate model COSMO-CLM. The INCA analysis fields are available at a horizontal grid spacing of 1 km x 1 km, whereas the COSMO model fields are from simulations at a 3 km x 3 km grid. The WPG, developed by Schlager et al. (2017, 2018), generates diagnostic fields at a high resolution grid of 100 m x 100 m, using observations from two dense meteorological station networks: The WegenerNet Feldbach Region (FBR) and its alpine sister network, the WegenerNet Johnsbachtal (JBT). The high-density WegenerNet FBR is located in southeastern Styria, Austria, a region predominated by a hilly terrain and small differences in altitude. The network consists of more than 150 meteorological stations. The WegenerNet JBT contains eleven meteorological stations at elevations ranging from about 600 m to 2200 m in a mountainous region in northern Styria. The wind fields of these different empirical/dynamical modeling approaches were intercompared for thermally induced and strong wind events, using hourly temporal resolutions as supplied by the WPG, with the focus on evaluating spatial differences and displacements between the different datasets. For this comparison, a novel neighborhood-based spatial wind verification methodology based on fractions skill socres (FSS) is used to estimate the modeling performances. All comparisons show an increasing FSS with increasing neighborhood size. In general, the spatial verification indicates a better statistical agreement for the hilly WegenerNet FBR than for the mountainous WegenerNet JBT. The results for the WegenerNet FBR show a better agreement between INCA and WegenerNet than between COSMO and WegenerNet wind fields, especially for large scales (neighborhoods). In particular, COSMO-CLM clearly underperforms in case of thermally induced wind events. For the JBT region, all spatial comparisons indicate little overlap at small neighborhood sizes and in general large biases of wind vectors occur between the dynamical (COSMO) and analysis (INCA) fields and the diagnostic (WegenerNet) reference dataset. Furthermore, gridpoint-based error measures were calculated for the same evaluation cases. The statistical agreement, estimated for the vector-mean wind speed and wind directions show again a better agreement for the WegenerNet FBR than for the WegenerNet JBT region. In general, the difference between modeled and observed wind directions is smaller for strong wind speed events than for thermally induced ones. A combined examination of all spatial and gridpoint-based error measures shows that COSMO-CLM with its limited horizontal resolution of 3 km x 3 km and hence, a too smoothed orography, is not able to represent small-scale wind patterns. The results for the JBT region indicate that the INCA analysis fields generally overestimate wind speeds in the summit regions. For strong wind speed events the wind speed in the valleys is underestimated by INCA, however. Regarding the WegenerNet diagnostic wind fields, the statistics show decent performance in the FBR and somewhat overestimated wind speeds for strong wind speed events in the Enns valley of the JBT region.


2016 ◽  
Author(s):  
Ethan R. Dale ◽  
Adrian J. McDonald ◽  
Jack H.J. Coggins ◽  
Wolfgang Rack

Abstract. Despite warming trends in global temperatures, sea ice extent in the Southern Hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce a vast amount of the sea ice in the region. We investigate the impacts of strong wind events on the Ross Sea Polynyas and its sea ice concentration and possible consequences on sea ice production. We utilise Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperatures. We compared these with surface winds and temperatures from automatic weather stations (AWS) of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the austral winter period defined as 1st April to 1st November in this study. Daily data were used to classified into characteristic regimes based on the percentiles of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea Polynya (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analysing sea ice motion vectors derived from SSM/I and SSMIS brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wind event. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to recreate these correlations using co-located ERA-Interim wind speeds. However when only days of a certain percentile based wind speed classification were used, the cross correlation functions produced by ERA-Interim wind speeds differed significantly from those produced using AWS wind speeds. The rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. This increase occurs on a more gradual time scale than the average persistence of a strong wind event and the resulting sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes. In the vicinity of Ross Island, ERA-Interim underestimates wind speeds by a factor of 1.7, which results in a significant misrepresentation of the impact of winds on polynya processes.


Author(s):  
Yujie Lin ◽  
Yumeng Jin ◽  
Hong Jin

As residential environment science advances, the environmental quality of outdoor microclimates has aroused increasing attention of scholars majoring in urban climate and built environments. Taking the microclimate of a traditional residential area in a severe cold city as the study object, this study explored the influence of spatial geometry factors on the microclimate of streets and courtyards by field measurements, then compared the differences in microclimate of distinct public spaces. The results are as follows. (1) The temperature of a NE-SW (Northeast-Southwest) oriented street was higher than that of a NW-SE (Northwest-Southeast) oriented street in both summer and winter, with an average temperature difference of 0.7–1.4 °C. The wind speeds in the latter street were slower, and the difference in average wind speed was 0.2 m/s. (2) In the street with a higher green coverage ratio, the temperature was much lower, a difference that was more obvious in summer. The difference in mean temperature was up to 1.2 °C. The difference in wind speed between the two streets was not obvious in winter, whereas the wind speed in summer was significantly lower for the street with a higher green coverage ratio, and the difference in average wind speed was 0.7 m/s. (3) The courtyards with higher SVF (sky view factor) had higher wind speeds in winter and summer, and the courtyards with larger SVF values had higher temperatures in summer, with an average temperature difference of 0.4 °C. (4) When the spaces had the same SVF values and green coverage ratios, the temperature of the street and courtyard were very similar, in both winter and summer. The wind speed of the street was significantly higher than the courtyard in summer, and the wind speed difference was 0.4 m/s.


2020 ◽  
Vol 50 (2) ◽  
pp. 383-397
Author(s):  
J. H. Lee ◽  
J. P. Monty

AbstractStatistical properties and development of wave fields with different wind forcings are investigated through parametric laboratory experiments. Thirty different, random sea states simulated using a JONSWAP spectrum are mechanically generated in deep-water conditions. Each of the random simulated sea states is exactly repeated but subjected to a range of different wind speeds to study the interaction between wind stress and the existing random sea state waves, especially the isolated effect of the wind stress on the largest waves. Wave crest distributions are sensitive to the wind at the extreme end such that there is an observed deviation from second-order theory for the largest (lowest probability) waves at high wind speed. Because the local wave steepness increases with wind speed, eventually reaching a breaking point, the growth of extreme waves (relative to the significant wave height) due to wind stress is shown to be limited by wave breaking. Even when large waves are breaking, the data reveal that amplitude modulation of wave groups is enhanced substantially as the wind speed increases due to the difference in growth rates between the highest and the lowest wave crests in a wave group. However, there is no evidence of an increase in modulation instability with the wind speed, suggesting that the wind–wave interaction under strong wind forcing dominates the wave growth mechanism over nonlinear wave interactions in a broadband wave field.


2020 ◽  
Author(s):  
Theodora Bello ◽  
Adewale Ajao ◽  
Oluwagbemiga Jegede

<p>The study investigates impact of wind speeds on the turbulent transport of CO<sub>2 </sub>fluxes for a land-surface atmosphere interface in a low-wind tropical area between May 28<sup>th</sup> and June 14<sup>th</sup>, 2010; and May 24<sup>th</sup> and June 15<sup>th</sup>, 2015. Eddy covariance technique was used to acquire turbulent mass fluxes of CO<sub>2</sub> and wind speed at the study site located inside the main campus of Obafemi Awolowo University, Ile – Ife, Nigeria. The results showed high levels of CO<sub>2 </sub>fluxes at nighttime attributed to stable boundary layer conditions and low wind speed. Large transport and distribution of CO<sub>2 </sub>fluxes were observed in the early mornings due to strong wind speeds recorded at the study location. In addition, negative CO<sub>2 </sub>fluxes were observed during the daytime attributed to prominent convective and photosynthetic activities. The study concludes there was an inverse relationship between turbulent transport of CO<sub>2 </sub>fluxes and wind speed for daytime period while nighttime CO<sub>2</sub> fluxes showed no significant correlation.</p><p><strong>Keywords</strong>: CO<sub>2 </sub>fluxes, Wind speed, Turbulent transport, Low-wind tropical area, Stable boundary layer</p>


Author(s):  
Michelle A. Kehs ◽  
Chris Vermillion ◽  
Hosam K. Fathy

This paper presents a controller for maximizing the time-averaged power output from an airborne wind energy generator in uncertain wind conditions. This system’s optimal energy output often involves flying in periodic figure-8 trajectories, but the precise optimal figure-8 shape is sensitive to environmental conditions, including wind speed. The literature presents controllers that are able to adapt to uncertainties, and this work expands on the current literature by using an extremum seeking based method. Extremum seeking is particularly well-suited for this application because of its well understood stability properties. In this work, extremum seeking is used to search through a family of optimal trajectories (computed offline) that correspond to discrete wind speeds. The controller is efficient in that it only searches for the optimum trajectory over the uncertain parameter (in this paper, wind speed). Results show that the controller converges to the optimal trajectory, provided it is initialized to a stable figure-8. The speed of convergence is dependent on the difference between the initial average power output and the optimal average power output.


INFO-TEKNIK ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 115
Author(s):  
Firda Herlina ◽  
Mujiburrahman Mujiburrahman ◽  
Adi Asyari

Along with the increase in population is directly proportional to the need for energy sources both to support people's lives and the increase in the industrial sector in Indonesia. One of the most widely used sources of electricity is wind. Wind turbines are very sensitive to the wind speed they receive, as a result of fluctuations in wind speed that affect wind rotation speed. For this reason, the author has the idea to combine a wind turbine with a solid object turbine, it is hoped that the combination can produce more consistent rotation. The tool used is a wind turbine combined with solid blade ball weights 8, 9 and 10 and ballast of 10 gr, 20 gr and 30 gr for each blade and wind speeds of 3.3 m / s, 3.6 m / s and 3.9. m / s with the experimental research method, the experiment was carried out 3 times in each tool for ± 2 minutes which was expected to produce a combination of the variables studied in the form of a turbine with the maximum rotational speed and the most consistent rotation. From these experiments, it was found that a turbine with 10 blades, a weight of 10 gr at a wind speed of 3.9 m / s had the fastest rotation, namely 116.43 rpm while a 9 blade turbine with a weight of 30 gr at all three wind speeds was the turbine with the most consistent rotation, namely the difference between the top and bottom rotation is 2.53 rpm.


2014 ◽  
Vol 31 (2) ◽  
pp. 437-446 ◽  
Author(s):  
Faisal S. Boudala ◽  
Roy Rasmussen ◽  
George A. Isaac ◽  
Bill Scott

Abstract Solid precipitation intensity, snow density, wind speed, and temperature were collected from November 2009 to February 2010 at a naturally sheltered station located at an altitude of 1640 m MSL on Whistler Mountain in British Colombia, Canada. The snowfall was measured using the instruments OTT Pluvio; the Yankee Environmental Systems, Inc., hot plate (HP); and the Vaisala FD12P (optical weather sensor). The snow amount and density were also measured manually daily. The observed wind speeds were in the range 0–4.5 m s−1 with a mean value of 0.5 m s−1. Based on this study, the HP overestimated the snow amount by about a factor of 2 as compared to the Pluvio measurements. Further data analysis using the raw output HP data suggests that this was because of false precipitations produced, particularly by the downslope flows in the complex terrain when the wind speeds were relatively stronger. This false precipitation varied from −0.9 to 1.3 mm h−1 with two peaks at 0.1 and 0.3 mm h−1 depending on wind speed—the larger peak being at higher wind speeds. Since the observed wind speeds were relatively calm, setting the correction factor to 0.15 mm h−1 gave reasonable values as compared to the Pluvio data. The difference between the corrected HP and Pluvio accumulation data varied from 16% to 3% depending on wind speed. The observed snow density in January 2010 varied from 0.04 to 0.32 g cm−3 with a mean value of 0.08 g cm−3. The snow amount measured using the corrected HP data agreed well with the manually measured values with a correlation coefficient of 0.93.


Sign in / Sign up

Export Citation Format

Share Document