Pol IV and RDR2: A two-RNA-polymerase machine that produces double-stranded RNA

Science ◽  
2021 ◽  
Vol 374 (6575) ◽  
pp. 1579-1586
Author(s):  
Kun Huang ◽  
Xiao-Xian Wu ◽  
Cheng-Li Fang ◽  
Zhou-Geng Xu ◽  
Hong-Wei Zhang ◽  
...  
Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1096
Author(s):  
Timothy W. Thoner ◽  
Xiang Ye ◽  
John Karijolich ◽  
Kristen M. Ogden

Packaging of segmented, double-stranded RNA viral genomes requires coordination of viral proteins and RNA segments. For mammalian orthoreovirus (reovirus), evidence suggests either all ten or zero viral RNA segments are simultaneously packaged in a highly coordinated process hypothesized to exclude host RNA. Accordingly, reovirus generates genome-containing virions and “genomeless” top component particles. Whether reovirus virions or top component particles package host RNA is unknown. To gain insight into reovirus packaging potential and mechanisms, we employed next-generation RNA-sequencing to define the RNA content of enriched reovirus particles. Reovirus virions exclusively packaged viral double-stranded RNA. In contrast, reovirus top component particles contained similar proportions but reduced amounts of viral double-stranded RNA and were selectively enriched for numerous host RNA species, especially short, non-polyadenylated transcripts. Host RNA selection was not dependent on RNA abundance in the cell, and specifically enriched host RNAs varied for two reovirus strains and were not selected solely by the viral RNA polymerase. Collectively, these findings indicate that genome packaging into reovirus virions is exquisitely selective, while incorporation of host RNAs into top component particles is differentially selective and may contribute to or result from inefficient viral RNA packaging.


1984 ◽  
Vol 4 (1) ◽  
pp. 188-194
Author(s):  
B S Ben-Tzvi ◽  
Y Koltin ◽  
M Mevarech ◽  
A Tamarkin

RNA polymerase activity is associated with the double-stranded RNA virions of Ustilago maydis. The reaction products of the polymerase activity are single-stranded RNA molecules. The RNA molecules synthesized are homologous to the three classes of double-stranded RNA molecules that typify the viral genome. The single-stranded RNA synthesized is released from the virions. The molecular weight of the single-stranded RNA transcripts is about half the size of the double-stranded RNA segments, and thus, it appears that in the in vitro reaction, full-length transcripts can be obtained.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Todd Blevins ◽  
Ram Podicheti ◽  
Vibhor Mishra ◽  
Michelle Marasco ◽  
Jing Wang ◽  
...  

In Arabidopsis thaliana, abundant 24 nucleotide small interfering RNAs (24 nt siRNA) guide the cytosine methylation and silencing of transposons and a subset of genes. 24 nt siRNA biogenesis requires nuclear RNA polymerase IV (Pol IV), RNA-dependent RNA polymerase 2 (RDR2) and DICER-like 3 (DCL3). However, siRNA precursors are mostly undefined. We identified Pol IV and RDR2-dependent RNAs (P4R2 RNAs) that accumulate in dcl3 mutants and are diced into 24 nt RNAs by DCL3 in vitro. P4R2 RNAs are mostly 26-45 nt and initiate with a purine adjacent to a pyrimidine, characteristics shared by Pol IV transcripts generated in vitro. RDR2 terminal transferase activity, also demonstrated in vitro, may account for occasional non-templated nucleotides at P4R2 RNA 3’ termini. The 24 nt siRNAs primarily correspond to the 5’ or 3’ ends of P4R2 RNAs, suggesting a model whereby siRNAs are generated from either end of P4R2 duplexes by single dicing events.


2019 ◽  
Vol 47 (17) ◽  
pp. 9024-9036 ◽  
Author(s):  
Jered M Wendte ◽  
Jeremy R Haag ◽  
Olga M Pontes ◽  
Jasleen Singh ◽  
Sara Metcalf ◽  
...  

Abstract In plants, nuclear multisubunit RNA polymerases IV and V are RNA Polymerase II-related enzymes that synthesize non-coding RNAs for RNA-directed DNA methylation (RdDM) and transcriptional gene silencing. Here, we tested the importance of the C-terminal domain (CTD) of Pol IV’s largest subunit given that the Pol II CTD mediates multiple aspects of Pol II transcription. We show that the CTD is dispensable for Pol IV catalytic activity and Pol IV termination-dependent activation of RNA-DEPENDENT RNA POLYMERASE 2, which partners with Pol IV to generate dsRNA precursors of the 24 nt siRNAs that guide RdDM. However, 24 nt siRNA levels decrease ∼80% when the CTD is deleted. RNA-dependent cytosine methylation is also reduced, but only ∼20%, suggesting that siRNA levels typically exceed the levels needed for methylation of most loci. Pol IV-dependent loci affected by loss of the CTD are primarily located in chromosome arms, similar to loci dependent CLSY1/2 or SHH1, which are proteins implicated in Pol IV recruitment. However, deletion of the CTD does not phenocopy clsy or shh1 mutants, consistent with the CTD affecting post-recruitment aspects of Pol IV activity at target loci.


1998 ◽  
Vol 72 (5) ◽  
pp. 4427-4429 ◽  
Author(s):  
Eric Routhier ◽  
Jeremy A. Bruenn

ABSTRACT At least eight conserved motifs are visible in the totivirus RNA-dependent RNA polymerase (RDRP). We have systematically altered each of these in the Saccharomyces cerevisiaedouble-stranded RNA virus ScVL1 by substituting the conserved motifs from a giardiavirus. The results help define the conserved regions of the RDRP involved in polymerase function and those essential for other reasons.


1984 ◽  
Vol 4 (1) ◽  
pp. 188-194 ◽  
Author(s):  
B S Ben-Tzvi ◽  
Y Koltin ◽  
M Mevarech ◽  
A Tamarkin

RNA polymerase activity is associated with the double-stranded RNA virions of Ustilago maydis. The reaction products of the polymerase activity are single-stranded RNA molecules. The RNA molecules synthesized are homologous to the three classes of double-stranded RNA molecules that typify the viral genome. The single-stranded RNA synthesized is released from the virions. The molecular weight of the single-stranded RNA transcripts is about half the size of the double-stranded RNA segments, and thus, it appears that in the in vitro reaction, full-length transcripts can be obtained.


Sign in / Sign up

Export Citation Format

Share Document