scholarly journals Human antibodies neutralize enterovirus D68 and protect against infection and paralytic disease

2020 ◽  
Vol 5 (49) ◽  
pp. eaba4902 ◽  
Author(s):  
Matthew R. Vogt ◽  
Jianing Fu ◽  
Nurgun Kose ◽  
Lauren E. Williamson ◽  
Robin Bombardi ◽  
...  

Enterovirus D68 (EV-D68) causes outbreaks of respiratory illness, and there is increasing evidence that it causes outbreaks of acute flaccid myelitis (AFM). There are no licensed therapies to prevent or treat EV-D68 infection or AFM disease. We isolated a panel of EV-D68–reactive human monoclonal antibodies that recognize diverse antigenic variants from participants with prior infection. One potently neutralizing cross-reactive antibody, EV68-228, protected mice from respiratory and neurologic disease when given either before or after infection. Cryo–electron microscopy studies revealed that EV68-228 and another potently neutralizing antibody (EV68-159) bound around the fivefold or threefold axes of symmetry on virion particles, respectively. The structures suggest diverse mechanisms of action by these antibodies. The high potency and effectiveness observed in vivo suggest that antibodies are a mechanistic correlate of protection against AFM disease and are candidates for clinical use in humans with EV-D68 infection.

2021 ◽  
Vol 70 (5) ◽  
Author(s):  
Ramachandran Erathodi Sanjay ◽  
Sasidharanpillai Sabeena ◽  
Sudandiradas Robin ◽  
John T. Shaji ◽  
M. P. Jayakrishnan ◽  
...  

EV-D68 is an emerging enterovirus infection associated with severe acute respiratory illness (SARI), acute flaccid myelitis (AFM) and acute flaccid paralysis (AFP). While EV-D68 outbreaks and sporadic cases are reported globally, a single case has been reported from India. The present study aims to investigate the molecular epidemiology and clinical characteristics of EV-D68-associated SARI cases from South India. We screened influenza-negative archived throat swab specimens from Influenza-Like Illness (ILI) and SARI cases (n=959; 2016 to 2018 period) for enteroviruses by pan-enterovirus real-time RT-PCR. Thirteen samples positive for enteroviruses were typed by PCR and sequencing based on VPI, VP2 and/or 5′NCR regions. One EV-D68 RNA sample was subjected to next-generation sequencing for whole genome characterisation. Among 13 enterovirus cases, four were ECHO-11, three EV-D68, two CV-A16 and one each EV-71, CV-B1, CV-B2 and CV-A9. All three cases of EV-D68 infection were reported in children below 2 years of age from Kerala state of South India during June and July 2017. The patients developed pneumonia without any neurological complications. Sequencing based on VPI and 5′NCR regions showed that EV-D68 strains belong to the novel subclade B3. The EV-D68 complete genome identified with two unique amino acid substitutions in VP1 (T-246-I) and 3D (K-344-R) regions. This study reiterates the EV-D68 novel subclade B3 circulation in India and indicates the urgent need for structured EV-D68 surveillance in the country to describe the epidemiology.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S74-S74
Author(s):  
Alejandro Diaz ◽  
Huanyu Wang ◽  
Isabel Torrus ◽  
Fatima Ara Montojo ◽  
Maria Mele-Casas ◽  
...  

Abstract Background Many aspects of EV-D68 pathogenesis in children are not fully understood. In 2014, we experienced an outbreak of EV-D68-associated acute respiratory illness affecting mostly asthmatic children with no cases of acute flaccid myelitis identified. Late in 2018, a new outbreak occurred. The objective of this study was to describe the differences in clinical presentation in children diagnosed with EV-D68 infection during the 2018 outbreak. Methods This is a single-center, observational study. Nasopharyngeal (NP) samples from patients <21 years of age that tested positive for rhinovirus/enterovirus (RV/EV) by the FilmArray respiratory panel v1.7 were prospectively collected. EV-D68 was confirmed using a laboratory-developed RT-PCR. Demographic, clinical characteristics, and semiquantitative EV-D68 loads were analyzed according to the clinical presentation. Results From May to October 2018, 1,987/3,633 (55%) samples were RV/EV positive. Of those 399/1,028 (39%) tested positive for EV-D68 (121 outpatients; 278 inpatients). Inpatients were older (3.1 vs. 1.8 year olds; P < 0.01) with no differences in sex or EV-D68 loads (P > 0.05). Within the inpatient cohort, 67 (1.4 year olds) children were previously healthy, 146 (4.1 year olds) had underlying asthma and 65 (2.5 year olds) had chronic medical conditions (24% vs. 53% vs. 23%, respectively). Most patients presented with respiratory symptoms (>95%), followed by fever (51%) or gastrointestinal symptoms (28%). Eleven children (4%) presented with neurologic manifestations including: acute flaccid myelitis in two children, opsoclonus myoclonus syndrome in one child, and seizures in the remaining eight. Rates of viral co-detection were low (8%) and none of the children with neurologic manifestations had another respiratory virus identified. Patients with neurologic findings had lower EV-D68 loads than those who did not (29 vs. 25 Ct values; P = 0.03). Conclusion EV-D68 infection was associated with significant morbidity, affecting children with underlying asthma at greater rates. It was associated with severe neurologic manifestations despite these children having lower EV-D68 loads. Active surveillance for EV-D68 should be routine to allow a better understanding of the epidemiology and severity of disease. Disclosures All Authors: No reported Disclosures.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jolene R. Bowers ◽  
Michael Valentine ◽  
Veronica Harrison ◽  
Viacheslav Y. Fofanov ◽  
John Gillece ◽  
...  

ABSTRACTEnteroviruses are a common cause of respiratory and gastrointestinal illness, and multiple subtypes, including poliovirus, can cause neurologic disease. In recent years, enterovirus D68 (EV-D68) has been associated with serious neurologic illnesses, including acute flaccid myelitis (AFM), frequently preceded by respiratory disease. A cluster of 11 suspect cases of pediatric AFM was identified in September 2016 in Phoenix, AZ. To determine if these cases were associated with EV-D68, we performed multiple genomic analyses of nasopharyngeal (NP) swabs and cerebrospinal fluid (CSF) material from the patients, including real-time PCR and amplicon sequencing targeting the EV-D68 VP1 gene and unbiased microbiome and metagenomic sequencing. Four of the 11 patients were classified as confirmed cases of AFM, and an additional case was classified as probable AFM. Real-time PCR and amplicon sequencing detected EV-D68 virus RNA in the three AFM patients from which NP swabs were collected, as well as in a fourth patient diagnosed with acute disseminated encephalomyelitis, a disease that commonly follows bacterial or viral infections, including enterovirus. No other obvious etiological causes for AFM were identified by 16S or RNA and DNA metagenomic sequencing in these cases, strengthening the likelihood that EV-D68 is an etiological factor. Herpes simplex viral DNA was detected in the CSF of the fourth case of AFM and in one additional suspect case from the cluster. Multiple genomic techniques, such as those described here, can be used to diagnose patients with suspected EV-D68 respiratory illness, to aid in AFM diagnosis, and for future EV-D68 surveillance and epidemiology.IMPORTANCEEnteroviruses frequently result in respiratory and gastrointestinal illness; however, multiple subtypes, including poliovirus, can cause severe neurologic disease. Recent biennial increases (i.e., 2014, 2016, and 2018) in cases of non-polio acute flaccid paralysis have led to speculations that other enteroviruses, specifically enterovirus D68 (EV-D68), are emerging to fill the niche that was left from poliovirus eradication. A cluster of 11 suspect cases of pediatric acute flaccid myelitis (AFM) was identified in 2016 in Phoenix, AZ. Multiple genomic analyses identified the presence of EV-D68 in the majority of clinical AFM cases. Beyond limited detection of herpesvirus, no other likely etiologies were found in the cluster. These findings strengthen the likelihood that EV-D68 is a cause of AFM and show that the rapid molecular assays developed for this study are useful for investigations of AFM and EV-D68.


2019 ◽  
Vol 6 (1) ◽  
pp. e000437
Author(s):  
Haichao Wang ◽  
Kinpong Tao ◽  
Cheuk Yin Leung ◽  
Kam Lun Hon ◽  
C M Apple Yeung ◽  
...  

BackgroundHuman enterovirus D68 (EV-D68) was first isolated in 1962 and has aroused public concern recently because of a nationwide outbreak among children in 2014–2015 in the USA. The symptoms include fever, runny nose, sneezing, cough and muscle pains. It might be associated with severe respiratory illness in individuals with pre-existing respiratory conditions and its potential association with acute flaccid myelitis is under investigation. In Asia, EV-D68 cases have been reported in several countries.The studyWe aimed to understand the EV-D68 prevalence and their genetic diversity in Hong Kong children.MethodsA total of 10 695 nasopharyngeal aspirate (NPA) samples from hospitalised patients aged <18 years were collected from September 2014 to December 2015 in two regional hospitals. NPAs tested positive for enterovirus/rhinovirus (EV/RV) were selected for genotyping. For those identified as EV-D68, their complete coding sequences (CDSs) were obtained by Sanger sequencing. A maximum-likelihood phylogeny was constructed using all EV-D68 complete coding sequences available in GenBank (n=482).Results2662/10 695 (24.9%) were tested positive with EV/RV and 882/2662 (33.1%) were selected randomly and subjected to molecular classification. EV-D68 was detected in 15 (1.70%) samples from patients with clinical presentations ranging from wheezing to pneumonia and belonged to subclade B3. Eight CDSs were successfully obtained. A total of 10 amino acid residue polymorphisms were detected in the viral capsid proteins, proteases, ATPase and RNA polymerase.ConclusionB3 subclade was the only subclade found locally. Surveillance of EV-D68 raises public awareness and provides the information to determine the most relevant genotypes for vaccine development.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Megan Culler Freeman ◽  
Alexandra I Wells ◽  
Jessica Ciomperlik-Patton ◽  
Michael M Myerburg ◽  
Liheng Yang ◽  
...  

Enterovirus D68 (EV-D68) has been implicated in outbreaks of severe respiratory illness and is associated with acute flaccid myelitis (AFM). EV-D68 is often detected in patient respiratory samples but has also been detected in stool and wastewater, suggesting the potential for both respiratory and enteric routes of transmission. Here, we used a panel of EV-D68 isolates, including a historical pre-2014 isolate and multiple contemporary isolates from AFM outbreak years, to define the dynamics of viral replication and the host response to infection in primary human airway cells and stem cell-derived enteroids. We show that some recent EV-D68 isolates have decreased sensitivity to acid and temperature compared with earlier isolates and that the respiratory, but not intestinal, epithelium induces a robust type III interferon (IFN) response that restricts infection. Our findings define the differential responses of the respiratory and intestinal epithelium to contemporary EV-D68 isolates and suggest that a subset of isolates have the potential to target both the human airway and gastrointestinal tracts.


2021 ◽  
Author(s):  
Thomas R Lane ◽  
Jianing Fu ◽  
Barbara Sherry ◽  
Bart Tarbet ◽  
Brett Hurst ◽  
...  

Acute flaccid myelitis (AFM) leads to loss of limb control in young children and is likely due to Enterovirus-D68 (EV-D68), for which there is no current treatment. We have developed a lead isoxazole-3-carboxamide analog of pleconaril (11526092) which displayed potent inhibition of the pleconaril-resistant CVB3-Woodruff (IC50 6-20 nM), EV-D68 (IC50 58 nM), and other enteroviruses. A mouse respiratory model of EV-D68 infection, in which pleconaril is inactive, showed decreased viremia of 3 log units as well as statistically significant 1 log reduction in lung titer reduction at day 5 after treatment with 11526092. A cryo-electron microscopy (cryo-EM) structure of EV-D68 in complex with 11526092 suggests that the increased potency may be due to additional hydrophobic interactions. Cryo-EM structures of 11526092 and pleconaril demonstrate destabilization of EV-D68 (MO strain) compared to the previously described stabilization of EV-D68 (Fermon strain) with pleconaril, illustrating clear strain dependent mechanisms of this molecule. 11526092 represents a more potent inhibitor in vitro with in vivo efficacy providing a potential future treatment for EV-D68 and AFM, suggesting an improvement over pleconaril for further optimization.


PLoS Biology ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. e3001384
Author(s):  
Fatima Amanat ◽  
Shirin Strohmeier ◽  
Philip Meade ◽  
Nicholas Dambrauskas ◽  
Barbara Mühlemann ◽  
...  

Vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been highly efficient in protecting against Coronavirus Disease 2019 (COVID-19). However, the emergence of viral variants that are more transmissible and, in some cases, escape from neutralizing antibody responses has raised concerns. Here, we evaluated recombinant protein spike antigens derived from wild-type SARS-CoV-2 and from variants B.1.1.7, B.1.351, and P.1 for their immunogenicity and protective effect in vivo against challenge with wild-type SARS-CoV-2 in the mouse model. All proteins induced high neutralizing antibodies against the respective viruses but also induced high cross-neutralizing antibody responses. The decline in neutralizing titers between variants was moderate, with B.1.1.7-vaccinated animals having a maximum fold reduction of 4.8 against B.1.351 virus. P.1 induced the most cross-reactive antibody responses but was also the least immunogenic in terms of homologous neutralization titers. However, all antigens protected from challenge with wild-type SARS-CoV-2 in a mouse model.


2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Min Zhao ◽  
Zi-Zheng Zheng ◽  
Man Chen ◽  
Kayvon Modjarrad ◽  
Wei Zhang ◽  
...  

ABSTRACT Palivizumab, a humanized murine monoclonal antibody that recognizes antigenic site II on both the prefusion (pre-F) and postfusion (post-F) conformations of the respiratory syncytial virus (RSV) F glycoprotein, is the only prophylactic agent approved for use for the treatment of RSV infection. However, its relatively low neutralizing potency and high cost have limited its use to a restricted population of infants at high risk of severe disease. Previously, we isolated a high-potency neutralizing antibody, 5C4, that specifically recognizes antigenic site Ø at the apex of the pre-F protein trimer. We compared in vitro and in vivo the potency and protective efficacy of 5C4 and the murine precursor of palivizumab, antibody 1129. Both antibodies were synthesized on identical murine backbones as either an IgG1 or IgG2a subclass and evaluated for binding to multiple F protein conformations, in vitro inhibition of RSV infection and propagation, and protective efficacy in mice. Although 1129 and 5C4 had similar pre-F protein binding affinities, the 5C4 neutralizing activity was nearly 50-fold greater than that of 1129 in vitro. In BALB/c mice, 5C4 reduced the peak titers of RSV 1,000-fold more than 1129 did in both the upper and lower respiratory tracts. These data indicate that antibodies specific for antigenic site Ø are more efficacious at preventing RSV infection than antibodies specific for antigenic site II. Our data also suggest that site Ø-specific antibodies may be useful for the prevention or treatment of RSV infection and support the use of the pre-F protein as a vaccine antigen. IMPORTANCE There is no vaccine yet available to prevent RSV infection. The use of the licensed antibody palivizumab, which recognizes site II on both the pre-F and post-F proteins, is restricted to prophylaxis in neonates at high risk of severe RSV disease. Recommendations for using passive immunization in the general population or for therapy in immunocompromised persons with persistent infection is limited because of cost, determined from the high doses needed to compensate for its relatively low neutralizing potency. Prior efforts to improve the in vitro potency of site II-specific antibodies did not translate to significant in vivo dose sparing. We isolated a pre-F protein-specific, high-potency neutralizing antibody (5C4) that recognizes antigenic site Ø and compared its efficacy to that of the murine precursor of palivizumab (antibody 1129) matched for isotype and pre-F protein binding affinities. Our findings demonstrate that epitope specificity is an important determinant of antibody neutralizing potency, and defining the mechanisms of neutralization has the potential to identify improved products for the prevention and treatment of RSV infection.


Viruses ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 490 ◽  
Author(s):  
Jing Sun ◽  
Xiao-Yi Hu ◽  
Xiao-Fang Yu

Human enterovirus D68 (EV-D68), a member of the species Enterovirus D of the Picornaviridae family, was first isolated in 1962 in the United States. EV-D68 infection was only infrequently reported until an outbreak occurred in 2014 in the US; since then, it has continued to increase worldwide. EV-D68 infection leads to severe respiratory illness and has recently been reported to be linked to the development of the neurogenic disease known as acute flaccid myelitis (AFM), mostly in children, seriously endangering public health. Hitherto, treatment options for EV-D68 infections were limited to supportive care, and as yet there are no approved, specific antiviral drugs or vaccines. Research on EV-D68 has mainly focused on its epidemiology, and its virologic characteristics and pathogenesis still need to be further explored. Here, we provide an overview of current research on EV-D68, including the genotypes and genetic characteristics of recent epidemics, the mechanism of infection and virus–host interactions, and its relationship to acute flaccid myelitis (AFM), in order to broaden our understanding of the biological features of EV-D68 and provide a basis for the development of effective antiviral agents.


2014 ◽  
Vol 21 (8) ◽  
pp. 1153-1163 ◽  
Author(s):  
Florian Krammer ◽  
Åsne Jul-Larsen ◽  
Irina Margine ◽  
Ariana Hirsh ◽  
Haakon Sjursen ◽  
...  

ABSTRACTEmerging H7N9 influenza virus infections in Asia have once more spurred the development of effective prepandemic H7 vaccines. However, many vaccines based on avian influenza viruses—including H7—are poorly immunogenic, as measured by traditional correlates of protection. Here we reevaluated sera from an H7N1 human vaccine trial performed in 2006. We examined cross-reactive antibody responses to divergent H7 strains, including H7N9, dissected the antibody response into head- and stalk-reactive antibodies, and tested thein vivopotency of these human sera in a passive-transfer H7N9 challenge experiment with mice. Although only a low percentage of vaccinees induced neutralizing antibody responses against the homologous vaccine strain and also H7N9, we detected strong cross-reactivity to divergent H7 hemagglutinins (HAs) in a large proportion of the cohort with a quantitative enzyme-linked immunosorbent assay. Furthermore, H7N1 vaccination induced antibodies to both the head and stalk domains of the HA, which is in sharp contrast to seasonal inactivated vaccines. Finally, we were able to show that both neutralizing and nonneutralizing antibodies improvedin vivovirus clearance in a passive-transfer H7N9 challenge mouse model.


Sign in / Sign up

Export Citation Format

Share Document