TRH cells, helpers making an impact in their local community

2021 ◽  
Vol 6 (55) ◽  
pp. eabf2886
Author(s):  
Stefan A. Schattgen ◽  
Paul G. Thomas

T resident helper cells (TRH), a T cell subset with follicular helper and resident memory properties, regulate B cell responses in nonlymphoid organs (see the related Research Articles by Swarnalekha et al. and Son et al.).

1996 ◽  
Vol 60 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Henri C. van der Heyde ◽  
M. Merle Elloso ◽  
Wun-Ling Chang ◽  
Barbara J. Pepper ◽  
Joan Batchelder ◽  
...  

Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2224-2234
Author(s):  
JS Duke-Cohan ◽  
C Morimoto ◽  
SF Schlossman

We have developed a bispecific antibody that recognizes the CD4 and CD26 antigens simultaneously and that was examined for its ability to target CD4+CD26+T cells. These latter cells constitute the activated component of the CD4+ CD29highCD45RO+ memory T-cell subset that provides help for B-cell Ig synthesis and help for responses against recall antigens. The purified bispecific antibody exhibited an estimated dissociation constant (kd) of 2.4 x 10(-9) mol/L, on comparison with 1.1 x 10(-9) mol/L for anti-CD26, and 1.6 x 10(-10) mol/L for anti-CD4. Surface plasmon resonance was used to show the bifunctional capacity of the antibody. On binding 125I-bispecific antibody to phytohemagglutinin (PHA)-activated T cells, 54.4% of the bound antibody was internalized. This was the result of bispecific binding, because monovalent fragments of anti-CD4 and anti-CD26 were not able to modulate antigen or induce internalization using both a fluorescent assay and an 125I-internalization assay. The ability of the bispecific antibody to be internalized was used to deliver a toxin, blocked ricin, specifically to cells that are CD4+CD26+. The inability of monovalent fragments to be internalized formed the basis for our hypothesis that monovalent binding by the bispecific immunotoxin would not result in internalization. Against resting E+ T cells, the bispecific immunotoxin developed a minimal effect. On preactivating the same cells, using phorbol myristate acetate (PMA)/ionomycin on concanavalin A (ConA) or especially PHA, levels of CD26 were upregulated and the immunotoxin effectively inhibited the ability to provide help for B-cell Ig synthesis while leaving intact the CD4-CD26+ and CD4+CD26- populations; an effect observed both functionally and by phenotype. The bispecific antibody proved to be most effective at inhibiting a heterologous mixed leukocyte reaction. We propose that this reagent may form the basis for the rational design of toxins designed to modulate activated T cells from, or directed against, tissue grafts.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2224-2234 ◽  
Author(s):  
JS Duke-Cohan ◽  
C Morimoto ◽  
SF Schlossman

Abstract We have developed a bispecific antibody that recognizes the CD4 and CD26 antigens simultaneously and that was examined for its ability to target CD4+CD26+T cells. These latter cells constitute the activated component of the CD4+ CD29highCD45RO+ memory T-cell subset that provides help for B-cell Ig synthesis and help for responses against recall antigens. The purified bispecific antibody exhibited an estimated dissociation constant (kd) of 2.4 x 10(-9) mol/L, on comparison with 1.1 x 10(-9) mol/L for anti-CD26, and 1.6 x 10(-10) mol/L for anti-CD4. Surface plasmon resonance was used to show the bifunctional capacity of the antibody. On binding 125I-bispecific antibody to phytohemagglutinin (PHA)-activated T cells, 54.4% of the bound antibody was internalized. This was the result of bispecific binding, because monovalent fragments of anti-CD4 and anti-CD26 were not able to modulate antigen or induce internalization using both a fluorescent assay and an 125I-internalization assay. The ability of the bispecific antibody to be internalized was used to deliver a toxin, blocked ricin, specifically to cells that are CD4+CD26+. The inability of monovalent fragments to be internalized formed the basis for our hypothesis that monovalent binding by the bispecific immunotoxin would not result in internalization. Against resting E+ T cells, the bispecific immunotoxin developed a minimal effect. On preactivating the same cells, using phorbol myristate acetate (PMA)/ionomycin on concanavalin A (ConA) or especially PHA, levels of CD26 were upregulated and the immunotoxin effectively inhibited the ability to provide help for B-cell Ig synthesis while leaving intact the CD4-CD26+ and CD4+CD26- populations; an effect observed both functionally and by phenotype. The bispecific antibody proved to be most effective at inhibiting a heterologous mixed leukocyte reaction. We propose that this reagent may form the basis for the rational design of toxins designed to modulate activated T cells from, or directed against, tissue grafts.


2006 ◽  
Vol 7 (1-2) ◽  
pp. 81-96 ◽  
Author(s):  
Wasin Charerntantanakul ◽  
James A. Roth

The present review concentrates on the biological aspects of porcine T lymphocytes. Their ontogeny, subpopulations, localization and trafficking, and responses to pathogens are reviewed. The development of porcine T cells begins in the liver during the first trimester of fetal life and continues in the thymus from the second trimester until after birth. Porcine T cells are divided into two lineages, based on their possession of the [@@@]\rmalpha [@@@]β or γδ T-cell receptor. Porcine [@@@]\rmalpha [@@@]β T cells recognize antigens in a major histocompatibility complex (MHC)-restricted manner, whereas the γδ T cells recognize antigens in a MHC non-restricted fashion. The CD4+CD8−and CD4+CD8loT cell subsets of [@@@]\rmalpha [@@@]β T cells recognize antigens presented in MHC class II molecules, while the CD4−CD8+T cell subset recognizes antigens presented in MHC class I molecules. Porcine [@@@]\rmalpha [@@@]β T cells localize mainly in lymphoid tissues, whereas γδ T cells predominate in the blood and intestinal epithelium of pigs. Porcine CD8+[@@@]\rmalpha [@@@]β T cells are a prominent T-cell subset during antiviral responses, while porcine CD4+[@@@]\rmalpha [@@@]β T cell responses predominantly occur in bacterial and parasitic infections. Porcine γδ T cell responses have been reported in only a few infections. Porcine T cell responses are suppressed by some viruses and bacteria. The mechanisms of T cell suppression are not entirely known but reportedly include the killing of T cells, the inhibition of T cell activation and proliferation, the inhibition of antiviral cytokine production, and the induction of immunosuppressive cytokines.


Sign in / Sign up

Export Citation Format

Share Document