Nanoscavenger provides long-term prophylactic protection against nerve agents in rodents

2019 ◽  
Vol 11 (473) ◽  
pp. eaau7091 ◽  
Author(s):  
Peng Zhang ◽  
Erik J. Liu ◽  
Caroline Tsao ◽  
Shane A. Kasten ◽  
Michael V. Boeri ◽  
...  

Nerve agents are a class of organophosphorus compounds (OPs) that blocks communication between nerves and organs. Because of their acute neurotoxicity, it is extremely difficult to rescue the victims after exposure. Numerous efforts have been devoted to search for an effective prophylactic nerve agent bioscavenger to prevent the deleterious effects of these compounds. However, low scavenging efficiency, unfavorable pharmacokinetics, and immunological problems have hampered the development of effective drugs. Here, we report the development and testing of a nanoparticle-based nerve agent bioscavenger (nanoscavenger) that showed long-term protection against OP intoxication in rodents. The nanoscavenger, which catalytically breaks down toxic OP compounds, showed a good pharmacokinetic profile and negligible immune response in a rat model of OP intoxication. In vivo administration of the nanoscavenger before or after OP exposure in animal models demonstrated protective and therapeutic efficacy. In a guinea pig model, a single prophylactic administration of the nanoscavenger effectively prevented lethality after multiple sarin exposures over a 1-week period. Our results suggest that the prophylactic administration of the nanoscavenger might be effective in preventing the toxic effects of OP exposure in humans.

2015 ◽  
Vol 66 (2) ◽  
pp. 129-134 ◽  
Author(s):  
Suzana Žunec ◽  
Božica Radić ◽  
Kamil Kuča ◽  
Kamil Musilek ◽  
Ana Lucić Vrdoljak

Abstract The inability of standard therapy to provide adequate protection against poisoning by organophosphorus compounds (pesticides and nerve agents) motivated us to search for new, more effective oximes. We investigated the pharmacotoxicological properties of six experimental K-oximes (K027, K033, K048, K074, K075, and K203) in vivo. The therapeutic efficacy of K-oximes (at doses of 5 or 25 % of their LD50) combined with atropine was assessed in paraoxon-poisoned mice and compared with conventionally used oximes HI-6 and TMB-4. The bisoxime K074 was the most toxic (LD50=21.4 mg kg-1) to mice, while monoxime K027 was the least toxic (LD50=672.8 mg kg-1). With the exception of K033, all of the tested K-oximes showed better therapeutic efficiency than HI-6 and TMB-4. K027 and K048 stood out by demonstrating low acute toxicities and ensuring protective indices ranging from 60.0 to 100.0 LD50 of paraoxon. Taking into account that these two oximes showed a similar therapeutic efficacy regardless of the applied doses, our results suggest that K027 and K048 could be antidotes for paraoxon intoxication.


2004 ◽  
Vol 14 (3) ◽  
pp. 183-194 ◽  
Author(s):  
Chessley R. Atchison ◽  
Robert E. Sheridan ◽  
Steven M. Duniho ◽  
Tsung-Ming Shih

2020 ◽  
Vol 44 (4) ◽  
pp. 391-401 ◽  
Author(s):  
Katie M Rubin ◽  
Bruce A Goldberger ◽  
Timothy J Garrett

Abstract A recently proposed model for the incorporation of xenobiotics of forensic interest into the human skeleton suggests nerve agent metabolites may incorporate into bone at relatively elevated concentrations based on their unique chemical properties. To test the hypothesis that nerve agent metabolites interact with bone, methods for the extraction, isolation and semi-quantitative detection of nerve agent metabolites (MPA, EMPA, IMPA, iBuMPA, CMPA and PMPA, corresponding to the nerve agents VX, Russian VX, sarin, cyclosarin and soman, respectively) from osseous tissue were developed using liquid chromatography–mass spectrometry with both quadrupole time-of-flight and triple quadrupole (QqQ) instruments. The optimized methods were validated on the QqQ instrument. Despite high ion suppression, the achieved limits of detection (5–20 pg/g for four analytes; 350 pg/g for the fifth analyte) were lower than many of those published for the same analytes in other biomatrices, including serum and urine. These methods were tested on the skeletal remains of minipigs exposed to the chemical weapon VX in vivo. The VX metabolite was detected in multiple minipig bone samples; to the authors’ knowledge, this is the first time in vivo nerve agent exposure has been detected from bone. Further, detected concentrations and diaphyseal-to-epiphyseal area count ratios reflect animal exposure history. Although the results are limited, they are promising, indicating that nerve agent metabolites may interact with bone as a pharmacokinetic compartment and can be extracted from bone postmortem. Additional studies, assessing the effects of different agents, exposure pathways and taphonomic variables, are needed; however, these results suggest the method may be used with human bone to detect use of chemical weapons from postmortem biomatrices even well after a suspected attack. More general implications for both nerve agent toxicology and skeletal toxicology are also discussed.


2010 ◽  
Vol 53 (4) ◽  
pp. 207-211 ◽  
Author(s):  
Jiří Bajgar

The studies dealing with mechanism of organophosphates (OP)/nerve agent action, prophylaxis and treatment of intoxications is a very hot topic at present. Though the research is very intensive, unfortunately, up to now, there is not universal or significantly better reactivator sufficiently effective against all nerve agents/OP when compared with presently available oximes (pralidoxime, methoxime, obidoxime, trimedoxime, HI-6). The use of the most effective reactivator (HI-6) using simple type of autoinjector (e.g. ComboPen) is strictly limited because of decomposition of HI-6 in solution. Thanks to better solubility it is clear that another salt of HI-6 (dimethanesulfonate, HI-6 DMS) is more convenient for the use as antidote against nerve agents in the autoinjector than HI-6 chloride (Cl). It was clearly demonstrated that reactivation potency of HI-6 DMS in comparison with HI-6 Cl in vivo was the same and bioavailability of HI-6 DMS is better than that of HI-6 Cl. Three chambered autoinjector allows administration of all three antidotes (atropine, reactivator, diazepam) simultaneously. Moreover, the content of chambers can be changed according to proposed requirements. Possible way to solve the problem of universal reactivator could be the use of two reactivators. Three chambered autoinjector is an ideal device for this purpose.


Author(s):  
Gagan R

Abstract: The recent poisoning of Russian opposition figure and critic Alexei Navalny on August 20th , 2020 with a Soviet-era Novichok nerve agent reminded the world of the use of chemical agents, especially nerve agents to eliminate individual targets or for mass destruction. Nerve agents are a class of organophosphorus compounds. Soman, Sarin, Tabun, Cyclosarin, VX are a few examples of nerve agents. Nerve agents affect a person by disrupting the mechanism by which nerve signals are passed in the body. They inhibit the action of acetylcholinesterase enzyme which is responsible for the breakdown of acetylcholine neurotransmitters leading to accumulation of acetylcholine in the body. Nerve agents have a range of chemical effects on the eye, gastro-intestinal (GI) tract, Central nervous system (CNS), Respiratory system, Cardiovascular system and Neurological system. The management of nerve agent poisoning is done by administering Atropine or Pralidoxime chloride or also by administering anticonvulsants like Benzodiazepines or Diazepam. This review presents all such detailed information on this class of chemical Warfare agents. Keywords: Chemical Warfare Weapon, Nerve Agents, Acetylcholinesterase, Toxicity, Instrumentation


2014 ◽  
Vol 62 (S 01) ◽  
Author(s):  
M. Sigler ◽  
S. Huell ◽  
R. Foth ◽  
W. Ruschewski ◽  
T. Tirilomis ◽  
...  

2018 ◽  
Vol 4 (4) ◽  
pp. 523-531
Author(s):  
Hina Mumtaz ◽  
Muhammad Asim Farooq ◽  
Zainab Batool ◽  
Anam Ahsan ◽  
Ashikujaman Syed

The main purpose of development pharmaceutical dosage form is to find out the in vivo and in vitro behavior of dosage form. This challenge is overcome by implementation of in-vivo and in-vitro correlation. Application of this technique is economical and time saving in dosage form development. It shortens the period of development dosage form as well as improves product quality. IVIVC reduce the experimental study on human because IVIVC involves the in vivo relevant media utilization in vitro specifications. The key goal of IVIVC is to serve as alternate for in vivo bioavailability studies and serve as justification for bio waivers. IVIVC follows the specifications and relevant quality control parameters that lead to improvement in pharmaceutical dosage form development in short period of time. Recently in-vivo in-vitro correlation (IVIVC) has found application to predict the pharmacokinetic behaviour of pharmaceutical preparations. It has emerged as a reliable tool to find the mode of absorption of several dosage forms. It is used to correlate the in-vitro dissolution with in vivo pharmacokinetic profile. IVIVC made use to predict the bioavailability of the drug of particular dosage form. IVIVC is satisfactory for the therapeutic release profile specifications of the formulation. IVIVC model has capability to predict plasma drug concentration from in vitro dissolution media.


1985 ◽  
Vol 110 (3) ◽  
pp. 329-337 ◽  
Author(s):  
G. A. Schuiling ◽  
H. Moes ◽  
T. R. Koiter

Abstract. The effect of pretreatment in vivo with oestradiol benzoate on in vitro secretion of LH and FSH was studied in long-term ovariectomized (OVX) rats both at the end of a 5-day continuous in vivo pretreatment with LRH and 4-days after cessation of such LRH pretreatment. Rats were on day 0 sc implanted with osmotic minipumps which released LRH at the rate of 250 ng/h. Control rats were implanted with a piece of silicone elastomer with the dimensions of a minipump. On days 2 and 4 the rats were injected with either 3 μg EB or with oil. On day 5 part of the rats were decapitated and the in vitro autonomous (i.e. non-LRH-stimulated) and 'supra-maximally' LRHstimulated release of LH and FSH was studied using a perifusion system. From other rats the minipumps were removed on day 5 and perifusion was performed on day 9. On the 5th day of the in vivo LRH pretreatment the pituitary LH/FSH stores were partially depleted; the pituitaries of the EB-treated rats more so than those of the oil-injected rats. EB alone had no significant effect on the content of the pituitary LH- and FSH stores. On day 9, i.e. 4 days after removal of the minipumps, the pituitary LH and FSH contents had increased in both the oil- and the EB injected rats, but had not yet recovered to control values. In rats not subjected to the 5-days pretreatment with LRH EB had a positive effect on the supra-maximally LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. EB had no effect on the non-stimulated secretion of FSH. After 5 days of in vivo pretreatment with LRH only, the in vitro non-stimulated and supra-maximally LRH-stimulated secretion of both LH and FSH were strongly impaired, the effect correlating well with the LRH-induced depletion of the pituitary LH/FSH stores. In such LRH-pretreated rats EB had on day 5 a negative effect on the (already depressed) LRH-stimulated secretion of LH (not on that of FSH). EB had no effect on the non-stimulated LH/FSH secretion. It could be demonstrated that the negative effect of the combined LRH/EB pretreatment was mainly due to the depressing effect of this treatment on the pituitary LH and FSH stores: the effect of oestradiol on the pituitary LRH-responsiveness (release as related to pituitary gonadotrophin content) remained positive. In LRH-pretreated rats, however, this positive effect of EB was smaller than in rats not pretreated with LRH. Four days after removal of the minipumps there was again a positive effect of EB on the LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. The positive effect of EB on the pituitary LRH-responsiveness was as strong as in rats which had not been exposed to exogenous LRH. The non-stimulated secretion of FSH was again not affected by EB. The results demonstrate that the effect of EB on the oestrogen-sensitive components of gonadotrophin secretion consists of two components: an effect on the pituitary LRH-responsiveness proper, and an effect on the pituitary LH/FSH stores. The magnitude of the effect of EB on the LRH-responsiveness is LRH dependent: it is very weak (almost zero) in LRH-pretreated rats, but strong in rats not exposed to LRH as well as in rats of which the LRH-pretreatment was stopped 4 days previously. Similarly, the effect of EB on the pituitary LH and FSH stores is LRH-dependent: in the absence of LRH, EB has no influence on the contents of these stores, but EB can potentiate the depleting effect of LRH on the LH/FSH-stores. Also this effect disappear after cessation of the LRH-pretreatment.


2018 ◽  
Author(s):  
Michael Luzuriaga ◽  
Raymond P. Welch ◽  
Madushani Dharmawardana ◽  
Candace Benjamin ◽  
Shaobo Li ◽  
...  

<div><div><div><p>Vaccines have an innate tendency to lose their structural conformation upon environmental and chemical stressors. A loss in conformation reduces the therapeutic ability to prevent the spread of a pathogen. Herein, we report an in-depth study of zeolitic imidazolate framework-8 (ZIF-8) and its ability to provide protection for a model viral vector against dena- turing conditions. The immunoassay and spectroscopy analysis together demonstrate enhanced thermal and chemical stability to the conformational structure of the encapsulated viral nanoparticle. The long-term biological activity of this virus-ZIF composite was investigated in animal models to further elucidate the integrity of the encapsulated virus, the bio-safety, and immunogenicity of the overall composite. Additionally, histological analysis found no observable tissue damage in the skin or vital organs in mice, following multiple subcutaneous administrations. This study shows that ZIF-based protein composites are strong candidates for improved preservation of proteinaceous drugs, are biocompatible, and capable of controlling the release and adsorption of drugs in vivo.</p></div></div></div>


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


Sign in / Sign up

Export Citation Format

Share Document