Enhanced Stability and Controlled Delivery of MOF Encapsulated Vaccines and Their Immunogenic Response In Vivo

Author(s):  
Michael Luzuriaga ◽  
Raymond P. Welch ◽  
Madushani Dharmawardana ◽  
Candace Benjamin ◽  
Shaobo Li ◽  
...  

<div><div><div><p>Vaccines have an innate tendency to lose their structural conformation upon environmental and chemical stressors. A loss in conformation reduces the therapeutic ability to prevent the spread of a pathogen. Herein, we report an in-depth study of zeolitic imidazolate framework-8 (ZIF-8) and its ability to provide protection for a model viral vector against dena- turing conditions. The immunoassay and spectroscopy analysis together demonstrate enhanced thermal and chemical stability to the conformational structure of the encapsulated viral nanoparticle. The long-term biological activity of this virus-ZIF composite was investigated in animal models to further elucidate the integrity of the encapsulated virus, the bio-safety, and immunogenicity of the overall composite. Additionally, histological analysis found no observable tissue damage in the skin or vital organs in mice, following multiple subcutaneous administrations. This study shows that ZIF-based protein composites are strong candidates for improved preservation of proteinaceous drugs, are biocompatible, and capable of controlling the release and adsorption of drugs in vivo.</p></div></div></div>

2018 ◽  
Author(s):  
Michael Luzuriaga ◽  
Raymond P. Welch ◽  
Madushani Dharmawardana ◽  
Candace Benjamin ◽  
Shaobo Li ◽  
...  

<div><div><div><p>Vaccines have an innate tendency to lose their structural conformation upon environmental and chemical stressors. A loss in conformation reduces the therapeutic ability to prevent the spread of a pathogen. Herein, we report an in-depth study of zeolitic imidazolate framework-8 (ZIF-8) and its ability to provide protection for a model viral vector against dena- turing conditions. The immunoassay and spectroscopy analysis together demonstrate enhanced thermal and chemical stability to the conformational structure of the encapsulated viral nanoparticle. The long-term biological activity of this virus-ZIF composite was investigated in animal models to further elucidate the integrity of the encapsulated virus, the bio-safety, and immunogenicity of the overall composite. Additionally, histological analysis found no observable tissue damage in the skin or vital organs in mice, following multiple subcutaneous administrations. This study shows that ZIF-based protein composites are strong candidates for improved preservation of proteinaceous drugs, are biocompatible, and capable of controlling the release and adsorption of drugs in vivo.</p></div></div></div>


2020 ◽  
Author(s):  
Yue Wang ◽  
Hao Song ◽  
Chao Liu ◽  
Ye Zhang ◽  
Yueqi Kong ◽  
...  

Abstract Zeolitic imidazolate framework-8 (ZIF-8) and its composites have diverse applications. However, ZIF-8 based nanocomposites are mainly used as carriers in biomolecular delivery, the functions of metal ions and ligands are rarely utilized to modulate the biofunctions. In this work, dendritic mesoporous organosilica nanoparticles (DMONs) with tetrasulfide bond were used to confine ZIF-8 growth partially inside mesopores as a novel nanocomposite for mRNA delivery. Each component in the resultant DMONs-ZIF-8 contributed to mRNA delivery applications, including high loading benefited from positively charged ZIF-8 and large mesopores of DMONs, endosomal escape promoted by imidazole ring of ZIF-8, long-term glutathione depletion mediated by both zinc ions and tetrasulfide bond. Combined together, DMONs-ZIF-8 demonstrated enhanced mRNA translation and better transfection efficiency than commercial products and toxic polymer modified DMONs in vitro and in vivo.


2017 ◽  
Vol 8 ◽  
pp. 204173141773540 ◽  
Author(s):  
Arta Kelmendi-Doko ◽  
J Peter Rubin ◽  
Katarina Klett ◽  
Christopher Mahoney ◽  
Sheri Wang ◽  
...  

Current materials used for adipose tissue reconstruction have critical shortcomings such as suboptimal volume retention, donor-site morbidity, and poor biocompatibility. The aim of this study was to examine a controlled delivery system of dexamethasone to generate stable adipose tissue when mixed with disaggregated human fat in an athymic mouse model for 6 months. The hypothesis that the continued release of dexamethasone from polymeric microspheres would enhance both adipogenesis and angiogenesis more significantly when compared to the single-walled microsphere model, resulting in long-term adipose volume retention, was tested. Dexamethasone was encapsulated within single-walled poly(lactic- co-glycolic acid) microspheres (Dex SW MS) and compared to dexamethasone encapsulated in a poly(lactic- co-glycolic acid) core surrounded by a shell of poly-l-lactide. The double-walled polymer microsphere system in the second model was developed to create a more sustainable drug delivery process. Dexamethasone-loaded poly(lactic- co-glycolic acid) microspheres (Dex SW MS) and dexamethasone-loaded poly(lactic- co-glycolic acid)/poly-l-lactide double-walled microspheres (Dex DW MS) were prepared using single and double emulsion/solvent techniques. In vitro release kinetics were determined. Two doses of each type of microsphere were examined; 50 and 27 mg of Dex MS and Dex DW MS were mixed with 0.3 mL of human lipoaspirate. Additionally, 50 mg of empty MS and lipoaspirate-only controls were examined. Samples were analyzed grossly and histologically after 6 months in vivo. Mass and volume were measured; dexamethasone microsphere-containing samples demonstrated greater adipose tissue retention compared to the control group. Histological analysis, including hematoxylin and eosin and CD31 staining, indicated increased vascularization (p < 0.05) within the Dex MS-containing samples. Controlled delivery of adipogenic factors, such as dexamethasone via polymer microspheres, significantly affects adipose tissue retention by maintaining healthy tissue formation and vascularization. Dex DW MS provide an improved model to former Dex SW MS, resulting in notably longer release time and, consequently, larger volumes of adipose retained in vivo. The use of microspheres, specifically double-walled, as vehicles for controlled drug delivery of adipogenic factors therefore present a clinically relevant model of adipose retention that has the potential to greatly improve soft tissue repair.


2006 ◽  
Vol 291 (6) ◽  
pp. H2905-H2910 ◽  
Author(s):  
Darrell D. Belke ◽  
Bernd Gloss ◽  
John M. Hollander ◽  
Eric A. Swanson ◽  
Hervé Duplain ◽  
...  

Inducible heat shock protein 70 (HSP70i) has been shown to exert a protective effect in hearts subjected to ischemia-reperfusion. Although studied in heat-shocked animals and in transgenic mice that constitutively overexpress the protein, the therapeutic application of the protein in the form of a viral vector-mediated HSP70i expression has not been widely examined. Accordingly, we have examined the effects of HSP70i delivered in vivo to the left ventricular free wall of the heart via viral gene therapy in mice. The affect of virally mediated HSP70i expression in preserving cardiac function following ischemia-reperfusion was examined after short-term expression (5-day adenovirus mediated) and long-term expression (8-mo adeno-associated virus mediated) in mice by subjecting ex vivo Langendorff perfused hearts to a regime of ischemia-reperfusion. Both vectors were capable of increasing HSP70i expression in the heart, and neither vector had any effect on cardiac function during aerobic (preischemic) perfusion when compared with corresponding controls. In contrast, both adenovirus-mediated and adeno-associated virus-mediated expression of HSP70i improved the contractile recovery of the heart after 120 min of reperfusion following ischemia. This study demonstrates the feasibility of using both short- and long-term expression of virally mediated HSP70i as a therapeutic intervention against cardiac ischemia-reperfusion injury.


2018 ◽  
Vol 2 (23) ◽  
pp. 3418-3427 ◽  
Author(s):  
Megan S. Rost ◽  
Ilya Shestopalov ◽  
Yang Liu ◽  
Andy H. Vo ◽  
Catherine E. Richter ◽  
...  

AbstractThe NFE2 transcription factor is expressed in multiple hematopoietic lineages with a well-defined role in regulating megakaryocyte biogenesis and platelet production in mammals. Mice deficient in NFE2 develop severe thrombocytopenia with lethality resulting from neonatal hemorrhage. Recent data in mammals reveal potential differences in embryonic and adult thrombopoiesis. Multiple studies in zebrafish have revealed mechanistic insights into hematopoiesis, although thrombopoiesis has been less studied. Rather than platelets, zebrafish possess thrombocytes, which are nucleated cells with similar functional properties. Using transcription activator-like effector nucleases to generate mutations in nfe2, we show that unlike mammals, zebrafish survive to adulthood in the absence of Nfe2. Despite developing severe thrombocytopenia, homozygous mutants do not display overt hemorrhage or reduced survival. Surprisingly, quantification of circulating thrombocytes in mutant 6-day-old larvae revealed no significant differences from wild-type siblings. Both wild-type and nfe2 null larvae formed thrombocyte-rich clots in response to endothelial injury. In addition, ex vivo thrombocytic colony formation was intact in nfe2 mutants, and adult kidney marrow displayed expansion of hematopoietic progenitors. These data suggest that loss of Nfe2 results in a late block in adult thrombopoiesis, with secondary expansion of precursors: features consistent with mammals. Overall, our data suggest parallels with erythropoiesis, including distinct primitive and definitive pathways of development and potential for a previously unknown Nfe2-independent pathway of embryonic thrombopoiesis. Long-term homozygous mutant survival will facilitate in-depth study of Nfe2 deficiency in vivo, and further investigation could lead to alternative methodologies for the enhancement of platelet production.


BMC Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
P. Kleis ◽  
E. Paschen ◽  
U. Häussler ◽  
Y. A. Bernal Sierra ◽  
C. A. Haas

Abstract Background Optogenetic tools allow precise manipulation of neuronal activity via genetically encoded light-sensitive proteins. Currently available optogenetic inhibitors are not suitable for prolonged use due to short-lasting photocurrents, tissue heating, and unintended changes in ion distributions, which may interfere with normal neuron physiology. To overcome these limitations, a novel potassium channel-based optogenetic silencer, named PACK, was recently developed. The PACK tool has two components: a photoactivated adenylyl cyclase from Beggiatoa (bPAC) and a cAMP-dependent potassium channel, SthK, which carries a large, long-lasting potassium current in mammalian cells. Previously, it has been shown that activating the PACK silencer with short light pulses led to a significant reduction of neuronal firing in various in vitro and acute in vivo settings. Here, we examined the viability of performing long-term studies in vivo by looking at the inhibitory action and side effects of PACK and its components in healthy and epileptic adult male mice. Results We targeted hippocampal cornu ammonis (CA1) pyramidal cells using a viral vector and enabled illumination of these neurons via an implanted optic fiber. Local field potential (LFP) recordings from CA1 of freely moving mice revealed significantly reduced neuronal activity during 50-min intermittent (0.1 Hz) illumination, especially in the gamma frequency range. Adversely, PACK expression in healthy mice induced chronic astrogliosis, dispersion of pyramidal cells, and generalized seizures. These side effects were independent of the light application and were also present in mice expressing bPAC without the potassium channel. Light activation of bPAC alone increased neuronal activity, presumably via enhanced cAMP signaling. Furthermore, we applied bPAC and PACK in the contralateral hippocampus of chronically epileptic mice following a unilateral injection of intrahippocampal kainate. Unexpectedly, the expression of bPAC in the contralateral CA1 area was sufficient to prevent the spread of spontaneous epileptiform activity from the seizure focus to the contralateral hippocampus. Conclusion Our study highlights the PACK tool as a potent optogenetic inhibitor in vivo. However, further refinement of its light-sensitive domain is required to avoid unexpected physiological changes.


2014 ◽  
Vol 62 (S 01) ◽  
Author(s):  
M. Sigler ◽  
S. Huell ◽  
R. Foth ◽  
W. Ruschewski ◽  
T. Tirilomis ◽  
...  

1985 ◽  
Vol 110 (3) ◽  
pp. 329-337 ◽  
Author(s):  
G. A. Schuiling ◽  
H. Moes ◽  
T. R. Koiter

Abstract. The effect of pretreatment in vivo with oestradiol benzoate on in vitro secretion of LH and FSH was studied in long-term ovariectomized (OVX) rats both at the end of a 5-day continuous in vivo pretreatment with LRH and 4-days after cessation of such LRH pretreatment. Rats were on day 0 sc implanted with osmotic minipumps which released LRH at the rate of 250 ng/h. Control rats were implanted with a piece of silicone elastomer with the dimensions of a minipump. On days 2 and 4 the rats were injected with either 3 μg EB or with oil. On day 5 part of the rats were decapitated and the in vitro autonomous (i.e. non-LRH-stimulated) and 'supra-maximally' LRHstimulated release of LH and FSH was studied using a perifusion system. From other rats the minipumps were removed on day 5 and perifusion was performed on day 9. On the 5th day of the in vivo LRH pretreatment the pituitary LH/FSH stores were partially depleted; the pituitaries of the EB-treated rats more so than those of the oil-injected rats. EB alone had no significant effect on the content of the pituitary LH- and FSH stores. On day 9, i.e. 4 days after removal of the minipumps, the pituitary LH and FSH contents had increased in both the oil- and the EB injected rats, but had not yet recovered to control values. In rats not subjected to the 5-days pretreatment with LRH EB had a positive effect on the supra-maximally LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. EB had no effect on the non-stimulated secretion of FSH. After 5 days of in vivo pretreatment with LRH only, the in vitro non-stimulated and supra-maximally LRH-stimulated secretion of both LH and FSH were strongly impaired, the effect correlating well with the LRH-induced depletion of the pituitary LH/FSH stores. In such LRH-pretreated rats EB had on day 5 a negative effect on the (already depressed) LRH-stimulated secretion of LH (not on that of FSH). EB had no effect on the non-stimulated LH/FSH secretion. It could be demonstrated that the negative effect of the combined LRH/EB pretreatment was mainly due to the depressing effect of this treatment on the pituitary LH and FSH stores: the effect of oestradiol on the pituitary LRH-responsiveness (release as related to pituitary gonadotrophin content) remained positive. In LRH-pretreated rats, however, this positive effect of EB was smaller than in rats not pretreated with LRH. Four days after removal of the minipumps there was again a positive effect of EB on the LRH-stimulated secretion of LH and FSH as well as on the non-stimulated secretion of LH. The positive effect of EB on the pituitary LRH-responsiveness was as strong as in rats which had not been exposed to exogenous LRH. The non-stimulated secretion of FSH was again not affected by EB. The results demonstrate that the effect of EB on the oestrogen-sensitive components of gonadotrophin secretion consists of two components: an effect on the pituitary LRH-responsiveness proper, and an effect on the pituitary LH/FSH stores. The magnitude of the effect of EB on the LRH-responsiveness is LRH dependent: it is very weak (almost zero) in LRH-pretreated rats, but strong in rats not exposed to LRH as well as in rats of which the LRH-pretreatment was stopped 4 days previously. Similarly, the effect of EB on the pituitary LH and FSH stores is LRH-dependent: in the absence of LRH, EB has no influence on the contents of these stores, but EB can potentiate the depleting effect of LRH on the LH/FSH-stores. Also this effect disappear after cessation of the LRH-pretreatment.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Jiayue Jiao

 Economic vitality is an important indicator of regional competitiveness. The demand for talents and the vitality of enterprises in different regions are obvious to all and have practical significance. Therefore, it is necessary to establish a survey data model and conduct in-depth study on improving regional economic vitality from the perspective of policy.Based on a variety of forecasting methods, this paper analyzes the short-term and long-term impact of economic policies in Northeast China, and finally puts forward the factors that affect the economic vitality of northeast policies. Finally, the paper puts forward the feasibility and targeted suggestions of strengthening regional economic vitality, obtaining long-term development and building a more competitive city in the new era. 


Sign in / Sign up

Export Citation Format

Share Document