Alterations of human skin microbiome and expansion of antimicrobial resistance after systemic antibiotics

2021 ◽  
Vol 13 (625) ◽  
Author(s):  
Jay-Hyun Jo ◽  
Catriona P. Harkins ◽  
Nicole H. Schwardt ◽  
Jessica A. Portillo ◽  
Matthew D. Zimmerman ◽  
...  
iScience ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 101925
Author(s):  
Shubham K. Jaiswal ◽  
Shitij Manojkumar Agarwal ◽  
Parikshit Thodum ◽  
Vineet K. Sharma

2019 ◽  
Vol 8 (6) ◽  
Author(s):  
Stanislas C. Morand ◽  
Morgane Bertignac ◽  
Agnes Iltis ◽  
Iris C. R. M. Kolder ◽  
Walter Pirovano ◽  
...  

Malassezia restricta, one of the predominant basidiomycetous yeasts present on human skin, is involved in scalp disorders. Here, we report the complete genome sequence of the lipophilic Malassezia restricta CBS 7877 strain, which will facilitate the study of the mechanisms underlying its commensal and pathogenic roles within the skin microbiome.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Andre Mu ◽  
Daniel McDonald ◽  
Alan K. Jarmusch ◽  
Cameron Martino ◽  
Caitriona Brennan ◽  
...  

Abstract Background Infectious bacterial diseases exhibiting increasing resistance to antibiotics are a serious global health issue. Bacteriophage therapy is an anti-microbial alternative to treat patients with serious bacterial infections. However, the impacts to the host microbiome in response to clinical use of phage therapy are not well understood. Results Our paper demonstrates a largely unchanged microbiota profile during 4 weeks of phage therapy when added to systemic antibiotics in a single patient with Staphylococcus aureus device infection. Metabolomic analyses suggest potential indirect cascading ecological impacts to the host (skin) microbiome. We did not detect genomes of the three phages used to treat the patient in metagenomic samples taken from saliva, stool, and skin; however, phages were detected using endpoint-PCR in patient serum. Conclusion Results from our proof-of-principal study supports the use of bacteriophages as a microbiome-sparing approach to treat bacterial infections.


2021 ◽  
Author(s):  
Wisely Chua ◽  
Si En Poh ◽  
Hao Li

The human skin is our outermost layer and serves as a protective barrier against external insults. Advances in next generation sequencing have enabled the discoveries of a rich and diverse community of microbes - bacteria, fungi and viruses that are residents of this surface. The genomes of these microbes also revealed the presence of many secretory enzymes. In particular, proteases which are hydrolytic enzymes capable of protein cleavage and degradation are of special interest in the skin environment which is enriched in proteins and lipids. In this minireview, we will focus on the roles of these skin-relevant microbial secreted proteases, both in terms of their widely studied roles as pathogenic agents in tissue invasion and host immune inactivation, and their recently discovered roles in inter-microbial interactions and modulation of virulence factors. From these studies, it has become apparent that while microbial proteases are capable of a wide range of functions, their expression is tightly regulated and highly responsive to the environments the microbes are in. With the introduction of new biochemical and bioinformatics tools to study protease functions, it will be important to understand the roles played by skin microbial secretory proteases in cutaneous health, especially the less studied commensal microbes with an emphasis on contextual relevance.


2017 ◽  
Vol 4 (S) ◽  
pp. 34
Author(s):  
Ming-Fa Hsieh

The use of antibiotics in the treatment of acne in specific group (pregnant women) of patients can lead to serious complications. We have previously demonstrated that the nanoparticles made of block copolymers of poly (ethylene glycol) and poly(e-caprolactone) can inhibit the growth of Propionibacterium acnes (P. acnes), a bacterium highly associated with the progress of acne vulgaris in the human skin [Polymers 2016; 8, 321]. To reduce the amount of antibiotics used in the treatment of skin acne, we have further demonstrated that a bacterium in the human skin microbiome can utilize PEG-based polymers to produce various short-chain fatty acids (SCFAs) which suppressed the growth of P. acnes. PEG-based polymers were chosen as selective fermentation initiators which specifically induced the fermentation of the skin commensal bacterium but not P. acnes. Interestingly, PEG-based polymers can efficiently suppress the growth of P. acnes. An acne ex vivo explant was established by using acne biopsies collected from patients with acne vulgaris at the early and middle stages. The levels of pro-inflammatory interleukin (IL)-8 cytokine in early- and middle-staged acnes were significantly higher than those in healthy skins. Incubation of acne ex vivo explants with sucrose remarkably reduced the level of IL-8 and the number of P. acnes. Results from mouse studies revealed that PEG-based polymer functions as antibiotic adjuvants which can considerably reduce the effective doses of clindamycin, a clinically-used acne antibiotic


2021 ◽  
Author(s):  
Arolyn Conwill ◽  
Anne C Kuan ◽  
Ravalika Damerla ◽  
Alexandra J Poret ◽  
Jacob S Baker ◽  
...  

What enables strains of the same species to coexist in a microbiome? Here, we investigate if host anatomy can explain strain co-residence of Cutibacterium acnes, the most abundant species on human skin. We reconstruct on-person evolution and migration using 947 C. acnes colony genomes acquired from 16 subjects, including from individual skin pores, and find that pores maintain diversity by limiting competition. Although strains with substantial fitness differences coexist within centimeter-scale regions, each pore is dominated by a single strain. Moreover, colonies from a pore typically have identical genomes. An absence of adaptive signatures suggests a genotype-independent source of low within-pore diversity. We therefore propose that pore anatomy imposes random single-cell bottlenecks during migration into pores and subsequently blocks new migrants; the resulting population fragmentation reduces competition and promotes coexistence. Our findings imply that therapeutic interventions involving pore-dwelling species should focus on removing resident populations over optimizing probiotic fitness.


2018 ◽  
Vol 84 (10) ◽  
pp. 2178-2193 ◽  
Author(s):  
T. Niemeyer - van der Kolk ◽  
H. E. C. van der Wall ◽  
C. Balmforth ◽  
M. B. A. Van Doorn ◽  
R. Rissmann

2019 ◽  
Vol 145 ◽  
pp. 595-603 ◽  
Author(s):  
Marisa Chattman Nielsen ◽  
Sunny C. Jiang

Acta Tropica ◽  
2018 ◽  
Vol 186 ◽  
pp. 102-106 ◽  
Author(s):  
Theckla Kazimoto ◽  
Salim Abdulla ◽  
Leah Bategereza ◽  
Omar Juma ◽  
Francis Mhimbira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document