Quantification and 3D visualisation of pore space in Gorleben rock salt: constraints from CT imaging and microfabrics

SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 41-52 ◽  
Author(s):  
Jakob Noe-Nygaard ◽  
Finn Engstrøm ◽  
Theis I. Sølling ◽  
Sven Roth

Summary In the present study, the focus is on two 2- to 3-mm cuttings-scale reservoir chalk samples chosen such that the resolution of the pore space is challenging the state of the art and the permeability differs by a factor of four. We compare the petrophysical parameters that are derived from nano-computed-tomography (nano-CT) images of trim sections and cuttings. Moreover, the trim-section results are upscaled to trim size to form the basis of an additional comparison. The results are also benchmarked against conventional core analysis (CCAL) results on trim-size samples. The comparison shows that petrophysical parameters from CT imaging agree reasonably well with those determined experimentally. The upscaled results show some discrepancy with the nano-CT results, particularly in the case of the low-permeability plug. This is probably because of the challenge in finding a representative subvolume. For the cuttings, the differences are significant for the low-permeability plug. For the two-phase-flow data, the predicted relative permeability endpoints differ significantly. The root cause of this again is attributed to the more-complex structure of the pore network in the low-permeability carbonate. The experiment was also run directly from the micro-CT results on a cutting measured on an in-house instrument; the results clearly show that micro-CT measurements on chalk do not capture the pore space with sufficient detail to be predictive. Overall, with the appropriate resolution, the present study shows that it is indeed feasible to obtain petrophysical parameters from imaging experiments on cuttings.


2021 ◽  
Vol 1 ◽  
pp. 95-97
Author(s):  
Christoph Lüdeling ◽  
Dirk Naumann ◽  
Wolfgang Minkley

Abstract. According to the state of the art in mining and repository research, undisturbed rock salt is impermeable to fluids. Hence, rock salt formations are considered as host rock for nuclear waste repositories. Viscous, polycrystalline salt rock with low humidity contains no connected pore spaces. Two mechanisms are known for fluid transport: (a) damage due to large deviatoric and tensile stresses generates dilatancy, and hence permeability. (b) Fluid pressure exceeding the minor principal stress can open pathways (pressure-driven percolation, Minkley et al., 2013). To assess barrier integrity of rock salt barriers, the dilatancy and minimal stress criteria have been derived. Recently (Ghanbarzadeh et al., 2015; Lewis and Holness, 1996), high permeabilities in rock salt have been postulated under certain conditions. In particular, at high stresses and temperatures, including possible repository conditions, rock salt is claimed to develop a connected, thus permeable, pore space. In the PeTroS project (Minkley et al., 2020), we investigated fluid transport in the supposedly permeable region. Five points in pressure-temperature space were defined – pressures of 18 and 36 MPa, temperatures of 140, 160, and 180 ∘C. At each point, experiments with both nitrogen and saturated NaCl solution (brine) were performed. Samples were prepared from natural rock salt of German Zechstein formations, both bedded and domal salt. Sample material was generally relatively pure rock salt with minor impurities. Cylindrical samples (diameter 100 mm, length 200 mm) were loaded in a triaxial (Kármán) cell. Fluid pressure was applied to a central pressure chamber; any transmitted fluid was collected and extracted at the secondary side. The entire cell was heated to the specified temperature. Experiments generally comprised an isotropic phase (several stages of fluid pressure almost up to the confining stress) and a fluid breakthrough phase (lowering of axial stress by strain-controlled extension). After the test, a coloured tracer fluid was injected to visualise fluid discharge points. Fluid breakthroughs with fluid pressure above the minor principal stress were observed at all five pressure-temperature conditions. Some samples showed an approximately Darcian flow at fluid pressure below the minor principal stress, with permeabilities in the order of 10−22 m2, as is regularly observed due to the small size and initial damage from sample preparation (Popp et al., 2007). Tests consistently showed a gradual decrease of flow rate, i.e. reduction of the initial damage. A stable permeability over longer times, as would be expected due to the formation of a connected pore space network, was not observed in any of the experiments. Intriguingly, experiments with brine showed no initial permeability even though the wetting fluid should plausibly favour the formation of a stable connected pore network. Predictions of the static pore scale theory (Ghanbarzadeh et al., 2015) could thus not be confirmed. Regarding repositories for heat-generating waste, it can be concluded that from a geomechanical point of view, the dilatancy and minimal stress criteria are the relevant criteria for barrier integrity even at higher pressure and temperature.


Author(s):  
C. A. Callender ◽  
Wm. C. Dawson ◽  
J. J. Funk

The geometric structure of pore space in some carbonate rocks can be correlated with petrophysical measurements by quantitatively analyzing binaries generated from SEM images. Reservoirs with similar porosities can have markedly different permeabilities. Image analysis identifies which characteristics of a rock are responsible for the permeability differences. Imaging data can explain unusual fluid flow patterns which, in turn, can improve production simulation models.Analytical SchemeOur sample suite consists of 30 Middle East carbonates having porosities ranging from 21 to 28% and permeabilities from 92 to 2153 md. Engineering tests reveal the lack of a consistent (predictable) relationship between porosity and permeability (Fig. 1). Finely polished thin sections were studied petrographically to determine rock texture. The studied thin sections represent four petrographically distinct carbonate rock types ranging from compacted, poorly-sorted, dolomitized, intraclastic grainstones to well-sorted, foraminiferal,ooid, peloidal grainstones. The samples were analyzed for pore structure by a Tracor Northern 5500 IPP 5B/80 image analyzer and a 80386 microprocessor-based imaging system. Between 30 and 50 SEM-generated backscattered electron images (frames) were collected per thin section. Binaries were created from the gray level that represents the pore space. Calculated values were averaged and the data analyzed to determine which geological pore structure characteristics actually affect permeability.


2004 ◽  
Vol 171 (4S) ◽  
pp. 507-507 ◽  
Author(s):  
Sanoj P. Punnen ◽  
Massoom A. Haider ◽  
Fenella Moulding ◽  
Martin O'Malley ◽  
Gina Lockwood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document