scholarly journals Mutator Genes Giving Rise to Decreased Antibiotic Susceptibility in Pseudomonas aeruginosa

2008 ◽  
Vol 52 (10) ◽  
pp. 3810-3813 ◽  
Author(s):  
Irith Wiegand ◽  
Alexandra K. Marr ◽  
Elena B. M. Breidenstein ◽  
Kristen N. Schurek ◽  
Patrick Taylor ◽  
...  

ABSTRACT Screening of the PA14 genomic transposon mutant library for resistance to ceftazidime, tobramycin, and ciprofloxacin led to the discovery of several mutants that appeared in more than one screen. Testing of the frequency of mutation to ciprofloxacin resistance revealed previously known mutator genes, including mutS and mutL, as well as mutators that have not yet been described for P. aeruginosa, including PA3958 and RadA (PA4609).

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Wang ◽  
Xiaoya Wang

AbstractBackgroundPseudomonas aeruginosa is an opportunistic pathogen which is associated with nosocomial infections and causes various diseases including urinary tract infection, pneumonia, soft-tissue infection and sepsis. The emergence of P. aeruginosa-acquired metallo-β-lactamase (MBL) is most worrisome and poses a serious threat during treatment and infection control. The objective of this study was to identify antibiotic susceptibility, phenotypic detection of MBL production and to determine the prevalence of MBL genes in carbapenem-resistant P. aeruginosa isolated from different clinical samples.MethodsA total of 329 non-duplicate P. aeruginosa isolated from various clinical samples from two hospitals in China between September 2017 and March 2019 were included in this study. Phenotypic detection of MBL was performed by the combined detection method using imipenem and imipenem-ethylenediaminetetraacetic acid (EDTA) discs. MBL-encoding genes including blaVIM-1, blaVIM-2, blaIMP-1, blaIMP-2, blaSPM-1, blaSIM, blaNDM-1 and blaGIM were detected by polymerase chain reaction (PCR).ResultsOf the 329 P. aeruginosa, majority of the isolates were resistant to imipenem (77.5%) followed by meropenem (64.7%). Of the 270 P. aeruginosa isolates tested, 149 (55.2%) isolates were found to be positive for MBL detection. Of the different samples, 57.8% (n = 26) of P. aeruginosa isolated from blood were found to be positive for MBL production. Of the various MBL genes, blaIMP-1 (28.2%) was the most predominant gene detected followed by blaVIM-2 (18.8%), blaVIM-1 (16.1%), blaNDM-1 (9.4%), blaIMP-2 (6.7%), blaSIM (6.0%), blaSPM-1 (4.0%) and blaGIM (1.3%) genes.ConclusionsThe high resistance of P. aeruginosa toward imipenem and meropenem and the high prevalence of blaIMP-1 and blaVIM-2 set the alarm on the increasing, perhaps the increased, carbapenem resistance. In addition to routine antibiotic susceptibility testings, our results emphasize the importance of both the phenotypic and genotypic MBL detection methods in routine practice for early detection of carbapenem resistance and to prevent further dissemination of this resistant pathogen.


2021 ◽  
Vol 9 (2) ◽  
pp. 388
Author(s):  
Marta Hernández-García ◽  
María García-Castillo ◽  
Sergio García-Fernández ◽  
Diego López-Mendoza ◽  
Jazmín Díaz-Regañón ◽  
...  

CrpP enzymes have been recently described as a novel ciprofloxacin-resistance mechanism. We investigated by whole genome sequencing the presence of crpP-genes and other mechanisms involved in quinolone resistance in MDR/XDR-Pseudomonas aeruginosa isolates (n = 55) with both ceftolozane-tazobactam susceptible or resistant profiles recovered from intensive care unit patients during the STEP (Portugal) and SUPERIOR (Spain) surveillance studies. Ciprofloxacin resistance was associated with mutations in the gyrA and parC genes. Additionally, plasmid-mediated genes (qnrS2 and aac(6′)-Ib-cr) were eventually detected. Ten chromosomal crpP-like genes contained in related pathogenicity genomic islands and 6 different CrpP (CrpP1-CrpP6) proteins were found in 65% (36/55) of the isolates. Dissemination of CrpP variants was observed among non-related clones of both countries, including the CC175 (Spain) high-risk clone and CC348 (Portugal) clone. Interestingly, 5 of 6 variants (CrpP1-CrpP5) carried missense mutations in an amino acid position (Gly7) previously defined as essential conferring ciprofloxacin resistance, and decreased ciprofloxacin susceptibility was only associated with the novel CrpP6 protein. In our collection, ciprofloxacin resistance was mainly due to chromosomal mutations in the gyrA and parC genes. However, crpP genes carrying mutations essential for protein function (G7, I26) and associated with a restored ciprofloxacin susceptibility were predominant. Despite the presence of crpP genes is not always associated with ciprofloxacin resistance, the risk of emergence of novel CrpP variants with a higher ability to affect quinolones is increasing. Furthermore, the spread of crpP genes in highly mobilizable genomic islands among related and non-related P. aeruginosa clones alert the dispersion of MDR pathogens in hospital settings.


2008 ◽  
Vol 40 (6-7) ◽  
pp. 487-494 ◽  
Author(s):  
Marcus Erlandsson ◽  
Hans Gill ◽  
David Nordlinder ◽  
Christian G. Giske ◽  
Daniel Jonas ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Petra Pusic ◽  
Elisabeth Sonnleitner ◽  
Beatrice Krennmayr ◽  
Dorothea A. Heitzinger ◽  
Michael T. Wolfinger ◽  
...  

Drugs ◽  
1995 ◽  
Vol 49 (Supplement 2) ◽  
pp. 175-176 ◽  
Author(s):  
G. Corti ◽  
F. Paradisi ◽  
E. Giganti ◽  
G. Buffini ◽  
E. Tortoli ◽  
...  

2010 ◽  
Vol 54 (10) ◽  
pp. 4159-4167 ◽  
Author(s):  
Carolina Alvarez-Ortega ◽  
Irith Wiegand ◽  
Jorge Olivares ◽  
Robert E. W. Hancock ◽  
José Luis Martínez

ABSTRACT The resistome of P. aeruginosa for three β-lactam antibiotics, namely, ceftazidime, imipenem, and meropenem, was deciphered by screening a comprehensive PA14 mutant library for mutants with increased or reduced susceptibility to these antimicrobials. Confirmation of the phenotypes of all selected mutants was performed by Etest. Of the total of 78 confirmed mutants, 41 demonstrated a reduced susceptibility phenotype and 37 a supersusceptibility (i.e., altered intrinsic resistance) phenotype, with 6 mutants demonstrating a mixed phenotype, depending on the antibiotic. Only three mutants demonstrated reduced (PA0908) or increased (glnK and ftsK) susceptibility to all three antibiotics. Overall, the mutant profiles of susceptibility suggested distinct mechanisms of action and resistance for the three antibiotics despite their similar structures. More detailed analysis indicated important roles for novel and known β-lactamase regulatory genes, for genes with likely involvement in barrier function, and for a range of regulators of alginate biosynthesis.


2010 ◽  
Vol 59 (3) ◽  
pp. 207-212 ◽  
Author(s):  
M.I. ABOU-DOBARA ◽  
M.A. DEYAB ◽  
E.M. ELSAWY ◽  
H.H. MOHAMED

Thirty nine isolates of Escherichia coli, twenty two isolates of Klebsiella pneumoniae and sixteen isolates of Pseudomonas aeruginosa isolated from urinary tract infected patients were analyzed by antimicrobial susceptibility typing and random amplified polymorphic DNA (RAPD)-PCR. Antibiotic susceptibility testing was carried out by microdilution and E Test methods. From the antibiotic susceptibility, ten patterns were recorded (four for E. coli, three for K. pneumoniae and three for P. aeruginosa respectively). Furthermore, genotyping showed seventeen RAPD patterns (seven for E. coli, five for K. pneumoniae and five for P. aeruginosa respectively). In this study, differentiation of strains of E. coli, K. pneumoniae and P. aeruginosa from nosocomial infection was possible with the use of RAPD.


ANKEM Dergisi ◽  
2021 ◽  
Author(s):  
Nilüfer Uzunbayır Akel ◽  
Yamaç Tekintaş ◽  
Fethiye Ferda Yılmaz ◽  
İsmail Öztürk ◽  
Mustafa Ökeer ◽  
...  

Pseudomonas aeruginosa is one of the most important causes of hospital infections. Although different antibiotic groups are used for the treatment of P.aeruginosa infections, quinolone groups are distinguished by the advantages of oral administration. However, in recent years, resistance against members of this group has made treatment more difficult. The aim of this study was to investigate the epidemiological relationship and possible mechanisms of resistance in ciprofloxacin resistant P. aeruginosa isolates from Ege University Hospital. The identification of P.aeruginosa bacteria isolated from clinical samples in Ege University Medical Faculty Medical Microbiology Laboratory was determined by VITEK MS automated systems by VITEK compact, antimicrobial susceptibility. The epidemiological relationships of the ciprofloxacin resistant isolates were determined by Enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The presence of qnrA, qnrB, qnrS, qepA genes, the quinolone resistance genes and nfxB, mexR, the regulatory genes of the efflux pump, was determined by PCR. The phenylalanine-arginine β-naphthylamide (PAβN) assay was used to determine the activation of the efflux pump. Twenty-two isolates (26.5 %) were found resistant to ciprofloxacin. According to the ERIC-PCR results, 11 unrelated clones were detected. Ciprofloxacin minimum inhibitory concentration (MIC) values were decreased 2-64 times in 10 isolates in the presence of PAIN. No ciprofloxacin MIC change was detected in one isolate. The presence of pump regulatory genes was determined in 10 of the 11 representative isolates, while only qnrB of the genes associated with quinolone resistance was detected in seven representative isolates. qnrA, qnrS, qepA genes were not detected in any isolate. Ciprofloxacin resistant P.aeruginosa isolates are isolated from our hospital. It is noteworthy that the isolates belonging to different genetic groups are in circulation in clinics. Basic resistance mechanisms are thought to be efflux pumps and qnrB genes.


Sign in / Sign up

Export Citation Format

Share Document