72. Longitudinal changes of the antibiotic susceptibility of Pseudomonas aeruginosa in CF-patients

1999 ◽  
Vol 54 ◽  
pp. S42
Author(s):  
B PRZYKLENK
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Wang ◽  
Xiaoya Wang

AbstractBackgroundPseudomonas aeruginosa is an opportunistic pathogen which is associated with nosocomial infections and causes various diseases including urinary tract infection, pneumonia, soft-tissue infection and sepsis. The emergence of P. aeruginosa-acquired metallo-β-lactamase (MBL) is most worrisome and poses a serious threat during treatment and infection control. The objective of this study was to identify antibiotic susceptibility, phenotypic detection of MBL production and to determine the prevalence of MBL genes in carbapenem-resistant P. aeruginosa isolated from different clinical samples.MethodsA total of 329 non-duplicate P. aeruginosa isolated from various clinical samples from two hospitals in China between September 2017 and March 2019 were included in this study. Phenotypic detection of MBL was performed by the combined detection method using imipenem and imipenem-ethylenediaminetetraacetic acid (EDTA) discs. MBL-encoding genes including blaVIM-1, blaVIM-2, blaIMP-1, blaIMP-2, blaSPM-1, blaSIM, blaNDM-1 and blaGIM were detected by polymerase chain reaction (PCR).ResultsOf the 329 P. aeruginosa, majority of the isolates were resistant to imipenem (77.5%) followed by meropenem (64.7%). Of the 270 P. aeruginosa isolates tested, 149 (55.2%) isolates were found to be positive for MBL detection. Of the different samples, 57.8% (n = 26) of P. aeruginosa isolated from blood were found to be positive for MBL production. Of the various MBL genes, blaIMP-1 (28.2%) was the most predominant gene detected followed by blaVIM-2 (18.8%), blaVIM-1 (16.1%), blaNDM-1 (9.4%), blaIMP-2 (6.7%), blaSIM (6.0%), blaSPM-1 (4.0%) and blaGIM (1.3%) genes.ConclusionsThe high resistance of P. aeruginosa toward imipenem and meropenem and the high prevalence of blaIMP-1 and blaVIM-2 set the alarm on the increasing, perhaps the increased, carbapenem resistance. In addition to routine antibiotic susceptibility testings, our results emphasize the importance of both the phenotypic and genotypic MBL detection methods in routine practice for early detection of carbapenem resistance and to prevent further dissemination of this resistant pathogen.


2008 ◽  
Vol 40 (6-7) ◽  
pp. 487-494 ◽  
Author(s):  
Marcus Erlandsson ◽  
Hans Gill ◽  
David Nordlinder ◽  
Christian G. Giske ◽  
Daniel Jonas ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Petra Pusic ◽  
Elisabeth Sonnleitner ◽  
Beatrice Krennmayr ◽  
Dorothea A. Heitzinger ◽  
Michael T. Wolfinger ◽  
...  

2010 ◽  
Vol 59 (3) ◽  
pp. 207-212 ◽  
Author(s):  
M.I. ABOU-DOBARA ◽  
M.A. DEYAB ◽  
E.M. ELSAWY ◽  
H.H. MOHAMED

Thirty nine isolates of Escherichia coli, twenty two isolates of Klebsiella pneumoniae and sixteen isolates of Pseudomonas aeruginosa isolated from urinary tract infected patients were analyzed by antimicrobial susceptibility typing and random amplified polymorphic DNA (RAPD)-PCR. Antibiotic susceptibility testing was carried out by microdilution and E Test methods. From the antibiotic susceptibility, ten patterns were recorded (four for E. coli, three for K. pneumoniae and three for P. aeruginosa respectively). Furthermore, genotyping showed seventeen RAPD patterns (seven for E. coli, five for K. pneumoniae and five for P. aeruginosa respectively). In this study, differentiation of strains of E. coli, K. pneumoniae and P. aeruginosa from nosocomial infection was possible with the use of RAPD.


2015 ◽  
Vol 12 (3) ◽  
pp. 485-495
Author(s):  
Baghdad Science Journal

A total of 60 cotton swabs are collected from patients suffering from burn wound and surgical site infections admitted to Baghdad Teaching Hospital and Burn Specialist Hospital in Baghdad city during 9/2013 to 11/2013. All cotton swabs are cultured initially on blood agar and MacConkey agar and subjected for standard bacteriological procedures for bacteriological diagnosis. Twenty samples out of sixty are identified as Pseudomonas aeruginosa by conventional methods. The results of antibiotic susceptibility test illustrate that the antibiotics resistance rate of Pseudomonas aeruginosa isolates is as follows:100% (2020) for ceftriaxone, cefepime and carbencillin, 70% (14/20) for amikacin, 65%(13/20) for tobramycin, ceftazidim and gentamycin, 55% (11/20) for ciprofloxacin and norfloxacin, 50% (10/20) for piperacillin and impeneme, 30% (6/20) for aztreonam. All Pseudomonas aeruginosa isolates are investigated for detection of some virulence factors (haemolysin, protease, lipase enzymes, and extracellular pigments) and biofilm formation. The results of virulence factors reveal that all the isolates are haemolysin, protease, lipase enzymes and extracellular pigments producer, while 95% of the isolates are biofilm producer. Six isolates are selected to irradiation by using CO2 laser according to the results of antibiotic susceptibility and virulence factors at power densities (2000, 2500, and 3000) W/cm2 with exposure time (60 and 90) second. The results of CO2 laser irradiation illustrate that CO2 laser irradiation lead to a reduction in the mean value of the viable number CFU/ml of Pseudomonas aeruginosa isolates with the increase of the power density and exposure time. The results of the statistical analysis by using analysis of variance (ANOVA) one way and least significant differences-LSD show that there are statistical significant differences in the mean of the viable number CFU/ml between different power densities and different exposure times. After irradiation, antibiotic susceptibility and virulence factors tests of the irradiated strains are performed. The current study concludes that CO2 laser has bactericidal effect on P. aeruginosa isolates without any effect on its antibiotics susceptibility and virulence factors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hai-bei Li ◽  
Ai-ming Hou ◽  
Tian-jiao Chen ◽  
Dong Yang ◽  
Zheng-shan Chen ◽  
...  

Given its excellent performance against the pathogens, UV disinfection has been applied broadly in different fields. However, only limited studies have comprehensively investigated the response of bacteria surviving UV irradiation to the environmental antibiotic stress. Here, we investigated the antibiotic susceptibility of Pseudomonas aeruginosa suffering from the UV irradiation. Our results revealed that UV exposure may decrease the susceptibility to tetracycline, ciprofloxacin, and polymyxin B in the survival P. aeruginosa. Mechanistically, UV exposure causes oxidative stress in P. aeruginosa and consequently induces dysregulation of genes contributed to the related antibiotic resistance genes. These results revealed that the insufficient ultraviolet radiation dose may result in the decreased antibiotic susceptibility in the pathogens, thus posing potential threats to the environment and human health.


2000 ◽  
Vol 44 (3) ◽  
pp. 658-664 ◽  
Author(s):  
Hideaki Maseda ◽  
Hiroshi Yoneyama ◽  
Taiji Nakae

ABSTRACT Pseudomonas aeruginosa expresses a low level of the MexAB-OprM efflux pump and shows natural resistance to many structurally and functionally diverse antibiotics. The mutation that has been referred to previously as nfxC expresses an additional efflux pump, MexEF-OprN, exhibiting resistance to fluoroquinolones, imipenem, and chloramphenicol and hypersusceptibility to β-lactam antibiotics. To address the antibiotic specificity of the MexEF-OprN efflux pump, we introduced a plasmid carrying themexEF-oprN operon into P. aeruginosa lacking the mexAB-oprM operon. The transformants exhibited resistance to fluoroquinolones, trimethoprim, and chloramphenicol but, unlike most nfxC-type mutants, did not show β-lactam hypersusceptibility. The transformants exhibited additional resistance to tetracycline. In the next experiment, we analyzed the MexEF-OprN pump subunit(s) responsible for substrate selectivity by expressing MexE, MexF, OprN, and MexEF in strains lacking MexA, MexB, OprM, and MexAB, respectively. The MexEF-OprM/ΔMexAB transformants exhibited MexEF-OprN-type pump function that rendered the strains resistant to fluoroquinolones and chloramphenicol but did not change susceptibility to β-lactam antibiotics compared with the host strain. The MexAB-OprN/ΔOprM, MexAF-OprM/ΔMexB, and MexEB-OprM/ΔMexA mutants exhibited antibiotic susceptibility indistinguishable from that in the mutant lacking both types of efflux pumps. The results imply that the MexEF-OprM pump selects substrates by a MexEF functional unit. Interestingly, OprN did not link functionally with the MexAB complex, despite the fact that OprM interacted functionally with MexEF.


1982 ◽  
Vol 16 (3) ◽  
pp. 458-463 ◽  
Author(s):  
N J Legakis ◽  
M Aliferopoulou ◽  
J Papavassiliou ◽  
M Papapetropoulou

Sign in / Sign up

Export Citation Format

Share Document