scholarly journals Pharmacodynamics of Daptomycin against Enterococcus faecium and Enterococcus faecalis in the Murine Thigh Infection Model

2018 ◽  
Vol 62 (10) ◽  
Author(s):  
James M. Kidd ◽  
Kamilia Abdelraouf ◽  
Tomefa E. Asempa ◽  
Romney M. Humphries ◽  
David P. Nicolau

ABSTRACT The Clinical and Laboratory Standards Institute (CLSI) daptomycin MIC susceptibility breakpoint for the treatment of enterococcal infections is ≤4 μg/ml. However, patients receiving daptomycin for the treatment of infections caused by enterococci with MICs of ≤4 μg/ml may experience treatment failures. We assessed the pharmacodynamics of daptomycin against enterococci in a neutropenic murine thigh infection model and determined the exposures necessary for bacteriostasis and a 1-log10-CFU reduction of Enterococcus faecalis and Enterococcus faecium. We further characterized daptomycin efficacy at clinically achievable exposures. Six E. faecium and 6 E. faecalis isolates (daptomycin MICs, 0.5 to 32 μg/ml) were studied. Daptomycin was administered at various doses over 24 h to achieve area under the free drug concentration-time curve-to-MIC ratios (fAUC0–24/MIC) ranging from 1 to 148. Daptomycin regimens that simulate mean human exposures following doses of 6, 8, and 10 mg/kg of body weight/day were also studied. Efficacy was assessed by the differences in the number of log10 CFU per thigh at 24 h. The Hill equation was used to estimate the fAUC0–24/MIC required to achieve bacteriostasis and a 1-log10-CFU reduction. For E. faecium, a 1-log10-CFU reduction required an fAUC0–24/MIC of 12.9 (R2 = 0.71). For E. faecalis, a 1-log10-CFU reduction was not achieved, while the fAUC0–24/MIC required for stasis was 7.2 (R2 = 0.8). With a human-simulated regimen of 6 mg/kg/day, a 1-log10-CFU reduction was observed in 3/3 E. faecium isolates with MICs of <4 μg/ml and 0/3 E. faecium isolates with MICs of ≥4 μg/ml; however, a 1-log10-CFU reduction was not achieved for any of the 6 E. faecalis isolates. These results, alongside clinical data, prompt a reevaluation of the current breakpoint.

2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Vanessa E. Rees ◽  
Rajbharan Yadav ◽  
Kate E. Rogers ◽  
Jürgen B. Bulitta ◽  
Veronika Wirth ◽  
...  

ABSTRACT Hypermutable Pseudomonas aeruginosa organisms are prevalent in chronic respiratory infections and have been associated with reduced lung function in cystic fibrosis (CF); these isolates can become resistant to all antibiotics in monotherapy. This study aimed to evaluate the time course of bacterial killing and resistance of meropenem and ciprofloxacin in combination against hypermutable and nonhypermutable P. aeruginosa. Static concentration time-kill experiments over 72 h assessed meropenem and ciprofloxacin in mono- and combination therapies against PAO1 (nonhypermutable), PAOΔmutS (hypermutable), and hypermutable isolates CW8, CW35, and CW44 obtained from CF patients with chronic respiratory infections. Meropenem (1 or 2 g every 8 h [q8h] as 3-h infusions and 3 g/day as a continuous infusion) and ciprofloxacin (400 mg q8h as 1-h infusions) in monotherapies and combinations were further evaluated in an 8-day hollow-fiber infection model study (HFIM) against CW44. Concentration-time profiles in lung epithelial lining fluid reflecting the pharmacokinetics in CF patients were simulated and counts of total and resistant bacteria determined. All data were analyzed by mechanism-based modeling (MBM). In the HFIM, all monotherapies resulted in rapid regrowth with resistance at 48 h. The maximum daily doses of 6 g meropenem (T>MIC of 80% to 88%) and 1.2 g ciprofloxacin (area under the concentration-time curve over 24 h in the steady state divided by the MIC [AUC/MIC], 176), both given intermittently, in monotherapy failed to suppress regrowth and resulted in substantial emergence of resistance (≥7.6 log10 CFU/ml resistant populations). The combination of these regimens achieved synergistic killing and suppressed resistance. MBM with subpopulation and mechanistic synergy yielded unbiased and precise curve fits. Thus, the combination of 6 g/day meropenem plus ciprofloxacin holds promise for future clinical evaluation against infections by susceptible hypermutable P. aeruginosa.


2015 ◽  
Vol 59 (10) ◽  
pp. 6568-6574 ◽  
Author(s):  
Alexander J. Lepak ◽  
Ajit Parhi ◽  
Michaela Madison ◽  
Karen Marchillo ◽  
Jamie VanHecker ◽  
...  

ABSTRACTAntibiotics with novel mechanisms of action are urgently needed. Processes of cellular division are attractive targets for new drug development. FtsZ, an integral protein involved in cell cytokinesis, is a representative example. In the present study, the pharmacodynamic (PD) activity of an FtsZ inhibitor, TXA-709, and its active metabolite, TXA-707, was evaluated in the neutropenic murine thigh infection model against 5Staphylococcus aureusisolates, including both methicillin-susceptible and methicillin-resistant isolates. The pharmacokinetics (PK) of the TXA-707 active metabolite were examined after oral administration of the TXA-709 prodrug at 10, 40, and 160 mg/kg of body weight. The half-life ranged from 3.2 to 4.4 h, and the area under the concentration-time curve (AUC) and maximum concentration of drug in serum (Cmax) were relatively linear over the doses studied. All organisms exhibited an MIC of 1 mg/liter. Dose fractionation demonstrated the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) to be the PD index most closely linked to efficacy (R2= 0.72). Dose-dependent activity was demonstrated against all 5 isolates, and the methicillin-resistance phenotype did not alter the pharmacokinetic/pharmacodynamic (PK/PD) targets. Net stasis was achieved against all isolates and a 1-log10kill level against 4 isolates. PD targets included total drug 24-h AUC/MIC values of 122 for net stasis and 243 for 1-log10killing. TXA-709 and TXA-707 are a promising novel antibacterial class and compound forS. aureusinfections. These results should prove useful for design of clinical dosing regimen trials.


2016 ◽  
Vol 60 (5) ◽  
pp. 3178-3182 ◽  
Author(s):  
Megan K. Luther ◽  
Louis B. Rice ◽  
Kerry L. LaPlante

ABSTRACTAmpicillin-ceftriaxone combination therapy has become a predominant treatment for seriousEnterococcus faecalisinfections, such as endocarditis. Unfortunately, ceftriaxone use is associated with future vancomycin-resistant enterococcus colonization. We evaluatedE. faecalisin anin vitropharmacodynamic model against simulated human concentration-time profiles of ampicillin plus ceftaroline, cefepime, ceftriaxone, or gentamicin. Ampicillin-cefepime and ampicillin-ceftaroline demonstrated activities similar to those of ampicillin-ceftriaxone againstE. faecalis.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Brian D. VanScoy ◽  
Elizabeth A. Lakota ◽  
Haley Conde ◽  
Jennifer McCauley ◽  
Lawrence Friedrich ◽  
...  

ABSTRACT Omadacycline is a novel aminomethylcycline with activity against Gram-positive and -negative organisms, including Haemophilus influenzae, which is one of the leading causes of community-acquired bacterial pneumonia (CABP). The evaluation of antimicrobial agents against H. influenzae using standard murine infection models is challenging due to the low pathogenicity of this species in mice. Therefore, 24-h dose-ranging studies using a one-compartment in vitro infection model were undertaken with the goal of characterizing the magnitude of the ratio of the area under the concentration-time curve (AUC) to the MIC (AUC/MIC ratio) associated with efficacy for a panel of five H. influenzae isolates. These five isolates, for which MIC values were 1 or 2 mg/liter, were exposed to omadacycline total-drug epithelial lining fluid (ELF) concentration-time profiles based on those observed in healthy volunteers following intravenous omadacycline administration. Relationships between change in log10 CFU/ml from baseline at 24 h and the total-drug ELF AUC/MIC ratios for each isolate and for the isolates pooled were evaluated using Hill-type models and nonlinear least-squares regression. As evidenced by the high coefficients of determination (r2) of 0.88 to 0.98, total-drug ELF AUC/MIC ratio described the data well for each isolate and the isolates pooled. The median total-drug ELF AUC/MIC ratios associated with net bacterial stasis and 1- and 2-log10 CFU/ml reductions from baseline at 24 h were 6.91, 8.91, and 11.1, respectively. These data were useful to support the omadacycline dosing regimens selected for the treatment of patients with CABP, as well as susceptibility breakpoints for H. influenzae.


2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Alexander J. Lepak ◽  
Miao Zhao ◽  
Karen Marchillo ◽  
Jamie VanHecker ◽  
David R. Andes

ABSTRACT Omadacycline is a novel aminomethylcycline antibiotic with potent activity against Staphylococcus aureus, including methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). We investigated the pharmacodynamic activity of omadacycline against 10 MSSA/MRSA strains in a neutropenic murine thigh model. The median 24-h area under the concentration-time curve (AUC)/MIC values associated with net stasis and 1-log kill were 21.9 and 57.7, respectively.


2016 ◽  
Vol 60 (7) ◽  
pp. 3891-3896 ◽  
Author(s):  
Brian D. VanScoy ◽  
Michael Trang ◽  
Jennifer McCauley ◽  
Haley Conde ◽  
Sujata M. Bhavnani ◽  
...  

ABSTRACTThe usefulness of β-lactam antimicrobial agents is threatened as never before by β-lactamase-producing bacteria. For this reason, there has been renewed interest in the development of broad-spectrum β-lactamase inhibitors. Herein we describe the results of dose fractionation and dose-ranging studies carried out using a one-compartmentin vitroinfection model to determine the exposure measure for CB-618, a novel β-lactamase inhibitor, most predictive of the efficacy when given in combination with meropenem. The challenge panel includedEnterobacteriaceaeclinical isolates, which collectively produced a wide range of β-lactamase enzymes (KPC-2, KPC-3, FOX-5, OXA-48, SHV-11, SHV-27, and TEM-1). Human concentration-time profiles were simulated for each drug, and samples were collected for drug concentration and bacterial density determinations. Using data from dose fractionation studies and a challengeKlebsiella pneumoniaeisolate (CB-618-potentiated meropenem MIC = 1 mg/liter), relationships between change from baseline in log10CFU/ml at 24 h and each of CB-618 area under the concentration-time curve over 24 h (AUC0–24), maximum concentration (Cmax), and percentage of the dosing interval that CB-618 concentrations remained above a given threshold were evaluated in combination with meropenem at 2 g every 8 h (q8h). The exposure measures most closely associated with CB-618 efficacy in combination with meropenem were the CB-618 AUC0–24(r2= 0.835) andCmax(r2= 0.826). Using the CB-618 AUC0–24indexed to the CB-618-potentiated meropenem MIC value, the relationship between change from baseline in log10CFU/ml at 24 h and CB-618 AUC0–24/MIC ratio in combination with meropenem was evaluated using the pooled data from five challenge isolates; the CB-618 AUC0–24/MIC ratio associated with net bacterial stasis and the 1- and 2-log10CFU/ml reductions from baseline at 24 h were 27.3, 86.1, and 444.8, respectively. These data provide a pharmacokinetics-pharmacodynamics (PK-PD) basis for evaluating potential CB-618 dosing regimens in combination with meropenem in future studies.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Paul G. Ambrose ◽  
Brian D. VanScoy ◽  
Michael Trang ◽  
Jennifer McCauley-Miller ◽  
Haley Conde ◽  
...  

ABSTRACT A major challenge in treating patients is the selection of the “right” antibiotic regimen. Given that the optimal β-lactam/β-lactamase inhibitor pair is dependent upon the spectrum of β-lactamase enzymes produced and the frequency of resistance to the β-lactamase inhibitor, it might be useful if a stand-alone were available for the clinician to pair with the “right” β-lactam rather than only in a fixed combination. We describe herein a one-compartment in vitro infection model studies conducted to identify the magnitudes of the pharmacokinetic-pharmacodynamic (PK-PD) index for a β-lactamase inhibitor, CB-618, that would restore the activity of four β-lactam partner agents (cefepime, ceftazidime, ceftolozane, and meropenem) with various doses (1 or 2 g) and dosing intervals (8 or 12 h). The challenge panel included Klebsiella pneumoniae (n = 5), Escherichia coli (n = 2), and Enterobacter cloacae (n = 1) strains, which produced a wide variety of β-lactamase enzymes (AmpC, CTXM-15, KPC-2, KPC-3, FOX-5, OXA-1/30, OXA-48, SHV-1, SHV-11, SHV-27, and TEM-1). Free-drug human concentration-time profiles were simulated for each agent, and specimens were collected for drug concentration and bacterial density determinations. CB-618 restored the activity of each β-lactam partner. The magnitudes of the CB-618 ratio of the area under the concentration-time curve from 0 to 24 h to the MIC (i.e., the AUC/MIC ratio) associated with net bacterial stasis and 1- and 2-log10 CFU/ml reductions from baseline at 24 h were 11.2, 32.9, and 136.3, respectively. These data may provide a PK-PD basis for the development of a stand-alone β-lactamase inhibitor.


2015 ◽  
Vol 59 (7) ◽  
pp. 3754-3760 ◽  
Author(s):  
Xia Xiao ◽  
Jian Sun ◽  
Tao Yang ◽  
Xi Fang ◽  
Dong Wu ◽  
...  

ABSTRACTValnemulin, a semisynthetic pleuromutilin antibiotic derivative, is greatly active againstMycoplasma. The objective of our study was to evaluate the effectiveness of valnemulin againstMycoplasma gallisepticumin a neutropenic intratracheal model in chickens using a pharmacokinetic/pharmacodynamic (PK-PD) method. The PK of valnemulin after intramuscular (i.m.) administration at doses of 1, 10, and 20 mg/kg of body weight inM. gallisepticum-infected neutropenic chickens was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Real-time PCR (RT-PCR) was used for quantitative detection ofM. gallisepticum. The ratio of the 24-h area under the concentration-time curve divided by the MIC (AUC24/MIC) correlated well with thein vivoantibacterial effectiveness of valnemulin (R2= 0.9669). The AUC24/MIC ratios for mycoplasmastasis (a reduction of 0 log10color-changing unit [CCU] equivalents/ml), a reduction of 1 log10CCU equivalents/ml, and a reduction of 2.5 log10CCU equivalents/ml are 28,820, 38,030, and 56,256, respectively. In addition, we demonstrated that valnemulin at a dose of 6.5 mg/kg resulted in a reduction of 2.5 log10CCU equivalents/ml. These investigations provide a solid foundation for the usage of valnemulin in poultry withM. gallisepticuminfections.


2014 ◽  
Vol 58 (7) ◽  
pp. 4185-4190 ◽  
Author(s):  
V. Balasubramanian ◽  
Suresh Solapure ◽  
Radha Shandil ◽  
Sheshagiri Gaonkar ◽  
K. N. Mahesh ◽  
...  

ABSTRACTAZD5847, a novel oxazolidinone with an MIC of 1 μg/ml, exhibits exposure-dependent killing kinetics against extracellular and intracellularMycobacterium tuberculosis. Oral administration of AZD5847 to mice infected withM. tuberculosisH37Rv in a chronic-infection model resulted in a 1.0-log10reduction in the lung CFU count after 4 weeks of treatment at a daily area under the concentration-time curve (AUC) of 105 to 158 μg · h/ml. The pharmacokinetic-pharmacodynamic parameter that best predicted success in an acute-infection model was an AUC for the free, unbound fraction of the drug/MIC ratio of ≥20. The percentage of time above the MIC in all of the efficacious regimens was 25% or greater.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Elizabeth A. Lakota ◽  
Justin C. Bader ◽  
Voon Ong ◽  
Ken Bartizal ◽  
Lynn Miesel ◽  
...  

ABSTRACT CD101 is a novel echinocandin with concentration-dependent fungicidal activity in vitro and a long half-life (∼133 h in humans, ∼70 to 80 h in mice). Given these characteristics, it is likely that the shape of the CD101 exposure (i.e., the time course of CD101 concentrations) influences efficacy. To test this hypothesis, doses which produce the same total area under the concentration-time curve (AUC) were administered to groups of neutropenic ICR mice infected with Candida albicans R303 using three different schedules. A total CD101 dose of 2 mg/kg was administered as a single intravenous (i.v.) dose or in equal divided doses of either 1 mg/kg twice weekly or 0.29 mg/kg/day over 7 days. The studies were performed using a murine disseminated candidiasis model. Animals were euthanized at 168 h following the start of treatment. Fungi grew well in the no-treatment control group and showed variable changes in fungal density in the treatment groups. When the CD101 AUC from 0 to 168 h (AUC0–168) was administered as a single dose, a >2 log10 CFU reduction from the baseline at 168 h was observed. When twice-weekly and daily regimens with similar AUC values were administered, net fungal stasis and a >1 log10 CFU increase from the baseline were observed, respectively. These data support the hypothesis that the shape of the CD101 AUC influences efficacy. Thus, CD101 administered once per week demonstrated a greater degree of fungal killing than the same dose divided into twice-weekly or daily regimens.


Sign in / Sign up

Export Citation Format

Share Document