scholarly journals Efficacy of Guanabenz Combination Therapy against Chronic Toxoplasmosis across Multiple Mouse Strains

2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Jennifer Martynowicz ◽  
J. Stone Doggett ◽  
William J. Sullivan

ABSTRACT Toxoplasma gondii, an obligate intracellular parasite that can cause life-threatening acute disease, differentiates into a quiescent cyst stage to establish lifelong chronic infections in animal hosts, including humans. This tissue cyst reservoir, which can reactivate into an acute infection, is currently refractory to clinically available therapeutics. Recently, we and others have discovered drugs capable of significantly reducing the brain cyst burden in latently infected mice, but not to undetectable levels. In this study, we examined the use of novel combination therapies possessing multiple mechanisms of action in mouse models of latent toxoplasmosis. Our drug regimens included combinations of pyrimethamine, clindamycin, guanabenz, and endochin-like quinolones (ELQs) and were administered to two different mouse strains in an attempt to eradicate brain tissue cysts. We observed mouse strain-dependent effects with these drug treatments: pyrimethamine-guanabenz showed synergistic efficacy in C57BL/6 mice yet did not improve upon guanabenz monotherapy in BALB/c mice. Contrary to promising in vitro results demonstrating toxicity to bradyzoites, we observed an antagonistic effect between guanabenz and ELQ-334 in vivo. While we were unable to completely eliminate the brain cyst burden, we found that a combination treatment with ELQ-334 and pyrimethamine impressively reduced the brain cyst burden by 95% in C57BL/6 mice, which approached the limit of detection. These analyses highlight the importance of evaluating anti-infective drugs in multiple mouse strains and will help inform further preclinical studies of cocktail therapies designed to treat chronic toxoplasmosis.

2020 ◽  
Author(s):  
Jennifer Martynowicz ◽  
J. Stone Doggett ◽  
William J. Sullivan

AbstractToxoplasma gondii, an obligate intracellular parasite that can cause life-threatening acute disease, differentiates into a quiescent cyst stage to establish lifelong chronic infections in animal hosts, including humans. This tissue cyst reservoir, which can reactivate into an acute infection, is currently refractory to clinically available therapeutics. Recently, we and others have discovered drugs capable of significantly reducing brain cyst burden in latently infected mice, but not to undetectable levels. In this study, we examined the use of novel combination therapies possessing multiple mechanisms of action in mouse models of latent toxoplasmosis. Our drug regimens included combinations of pyrimethamine, clindamycin, guanabenz, and endochin-like quinolones (ELQs), and were administered to two different mouse strains in an attempt to eradicate brain tissue cysts. We observed mouse strain-dependent effects with these drug treatments: pyrimethamine + guanabenz showed synergistic efficacy in C57BL/6 mice, yet did not improve upon guanabenz monotherapy in BALB/c mice. Contrary to promising in vitro results demonstrating toxicity to bradyzoites, we observed an antagonistic effect between guanabenz + ELQ-334 in vivo. While we were unable to completely eliminate brain cyst burden, we found that a combination treatment of ELQ-334 + pyrimethamine impressively reduced brain cysts to 95% in C57BL/6 mice, which approaches the limit of detection. These analyses highlight the importance of evaluating anti-infective drugs in multiple mouse strains and will help inform further preclinical cocktail therapy studies designed to treat chronic toxoplasmosis.


2016 ◽  
Vol 60 (10) ◽  
pp. 5688-5694 ◽  
Author(s):  
Daniel G. Meeker ◽  
Karen E. Beenken ◽  
Weston B. Mills ◽  
Allister J. Loughran ◽  
Horace J. Spencer ◽  
...  

ABSTRACTWe usedin vitroandin vivomodels of catheter-associated biofilm formation to compare the relative activity of antibiotics effective against methicillin-resistantStaphylococcus aureus(MRSA) in the specific context of an established biofilm. The results demonstrated that, underin vitroconditions, daptomycin and ceftaroline exhibited comparable activity relative to each other and greater activity than vancomycin, telavancin, oritavancin, dalbavancin, or tigecycline. This was true when assessed using established biofilms formed by the USA300 methicillin-resistant strain LAC and the USA200 methicillin-sensitive strain UAMS-1. Oxacillin exhibited greater activity against UAMS-1 than LAC, as would be expected, since LAC is an MRSA strain. However, the activity of oxacillin was less than that of daptomycin and ceftaroline even against UAMS-1. Among the lipoglycopeptides, telavancin exhibited the greatest overall activity. Specifically, telavancin exhibited greater activity than oritavancin or dalbavancin when tested against biofilms formed by LAC and was the only lipoglycopeptide capable of reducing the number of viable bacteria below the limit of detection. With biofilms formed by UAMS-1, telavancin and dalbavancin exhibited comparable activity relative to each other and greater activity than oritavancin. Importantly, ceftaroline was the only antibiotic that exhibited greater activity than vancomycin when testedin vivoin a murine model of catheter-associated biofilm formation. These results emphasize the need to consider antibiotics other than vancomycin, most notably, ceftaroline, for the treatment of biofilm-associatedS. aureusinfections, including by the matrix-based antibiotic delivery methods often employed for local antibiotic delivery in the treatment of these infections.


2006 ◽  
Vol 74 (5) ◽  
pp. 2985-2995 ◽  
Author(s):  
JoAnn M. Tufariello ◽  
Kaixia Mi ◽  
Jiayong Xu ◽  
Yukari C. Manabe ◽  
Anup K. Kesavan ◽  
...  

ABSTRACT Approximately one-third of the human population is latently infected with Mycobacterium tuberculosis, comprising a critical reservoir for disease reactivation. Despite the importance of latency in maintaining M. tuberculosis in the human population, little is known about the mycobacterial factors that regulate persistence and reactivation. Previous in vitro studies have implicated a family of five related M. tuberculosis proteins, called resuscitation promoting factors (Rpfs), in regulating mycobacterial growth. We studied the in vivo role of M. tuberculosis rpf genes in an established mouse model of M. tuberculosis persistence and reactivation. After an aerosol infection with the M. tuberculosis Erdman wild type (Erdman) or single-deletion rpf mutants to establish chronic infections in mice, reactivation was induced by administration of the nitric oxide (NO) synthase inhibitor aminoguanidine. Of the five rpf deletion mutants tested, one (ΔRv1009) exhibited a delayed reactivation phenotype, manifested by delayed postreactivation growth kinetics and prolonged median survival times among infected animals. Immunophenotypic analysis suggested differences in pulmonary B-cell responses between Erdman- and ΔRv1009-infected mice at advanced stages of reactivation. Analysis of rpf gene expression in the lungs of Erdman-infected mice revealed that relative expression of four of the five rpf-like genes was diminished at late times following reactivation, when bacterial numbers had increased substantially, suggesting that rpf gene expression may be regulated in a growth phase-dependent manner. To our knowledge, ΔRv1009 is the first M. tuberculosis mutant to have a specific defect in reactivation without accompanying growth defects in vitro or during acute infection in vivo.


2017 ◽  
Vol 95 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Rosa Sessa ◽  
Marisa Di Pietro ◽  
Simone Filardo ◽  
Alessia Bressan ◽  
Luigi Rosa ◽  
...  

Chlamydia trachomatis is an obligate, intracellular pathogen responsible for the most common sexually transmitted bacterial disease worldwide, causing acute and chronic infections. The acute infection is susceptible to antibiotics, whereas the chronic one needs prolonged therapies, thus increasing the risk of developing antibiotic resistance. Novel alternative therapies are needed. The intracellular development of C. trachomatis requires essential nutrients, including iron. Iron-chelating drugs inhibit C. trachomatis developmental cycle. Lactoferrin (Lf), a pleiotropic iron binding glycoprotein, could be a promising candidate against C. trachomatis infection. Similarly to the efficacy against other intracellular pathogens, bovine Lf (bLf) could both interfere with C. trachomatis entry into epithelial cells and exert an anti-inflammatory activity. In vitro and in vivo effects of bLf against C. trachomatis infectious and inflammatory process has been investigated. BLf inhibits C. trachomatis entry into host cells when incubated with cell monolayers before or at the moment of the infection and down-regulates IL-6/IL-8 synthesized by infected cells. Six out of 7 pregnant women asymptomatically infected by C. trachomatis, after 30 days of bLf intravaginal administration, were negative for C. trachomatis and showed a decrease of cervical IL-6 levels. This is the first time that the bLf protective effect against C. trachomatis infection has been demonstrated.


2004 ◽  
Vol 101 (2) ◽  
pp. 314-322 ◽  
Author(s):  
Zhi-Jian Chen ◽  
George T. Gillies ◽  
William C. Broaddus ◽  
Sujit S. Prabhu ◽  
Helen Fillmore ◽  
...  

Object. The goal of this study was to validate a simple, inexpensive, and robust model system to be used as an in vitro surrogate for in vivo brain tissues in preclinical and exploratory studies of infusion-based intraparenchymal drug and cell delivery. Methods. Agarose gels of varying concentrations and porcine brain were tested to determine the infusion characteristics of several different catheters at flow rates of 0.5 and 1 µl per minute by using bromophenol blue (BPB) dye (molecular weight [MW] ∼690) and gadodiamide (MW ∼573). Magnetic resonance (MR) imaging and videomicroscopy were used to measure the distribution of these infusates, with a simultaneous measurement of infusion pressures. In addition, the forces of catheter penetration and movement through gel and brain were measured. Agarose gel at a 0.6% concentration closely resembles in vivo brain with respect to several critical physical characteristics. The ratio of distribution volume to infusion volume of agarose was 10 compared with 7.1 for brain. The infusion pressure of the gel demonstrated profiles similar in configuration and magnitude to those of the brain (plateau pressures 10–20 mm Hg). Gadodiamide infusion in agarose closely resembled that in the brain, as documented using T1-weighted MR imaging. Gadodiamide distribution in agarose gel was virtually identical to that of BPB dye, as documented by MR imaging and videomicroscopy. The force profile for insertion of a silastic catheter into agarose gel was similar in magnitude and configuration to the force profile for insertion into the brain. Careful insertion of the cannula using a stereotactic guide is critical to minimize irregularity and backflow of infusate distribution. Conclusions. Agarose gel (0.6%) is a useful surrogate for in vivo brain in exploratory studies of convection-enhanced delivery.


1998 ◽  
Vol 66 (9) ◽  
pp. 4176-4182 ◽  
Author(s):  
Corinne Mercier ◽  
Daniel K. Howe ◽  
Dana Mordue ◽  
Maren Lingnau ◽  
L. David Sibley

ABSTRACT Following invasion into the host cell, the protozoanToxoplasma gondii secretes a variety of proteins that modify the parasitophorous vacuole. Within the vacuole, the 28-kDa dense granule protein known as GRA2 is specifically targeted to the tubulovesicular network which forms connections with the vacuolar membrane. To investigate the importance of GRA2, we derived from strain RH a mutant T. gondii line in which GRA2 was disrupted by replacement with the marker Ble (selecting for phleomycin resistance). The Δgra2 mutant invaded and grew normally in both fibroblasts and macrophages in vitro; however, it was less virulent during acute infection in mice. The survival rate of mice inoculated with Δgra2 was significantly higher; some infected mice survived the acute infection, whereas all mice infected with the wild-type strain RH succumbed to early death. Chronic infection by Δgra2 was detected by positive serology, immunohistochemical detection of parasites and cysts in the brain, and reisolation of parasites by bioassay at 6 weeks postinfection. Thus, absence of GRA2 partially attenuates the virulence of T. gondii during the acute phase of infection and allows for establishment of chronic infection by the otherwise highly virulent RH strain. These results establish that GRA2 plays an important role during in vivo infection and provide a potential model for examining acute pathogenesis by T. gondii.


2011 ◽  
Vol 79 (10) ◽  
pp. 4029-4041 ◽  
Author(s):  
Lauren C. Frazer ◽  
Catherine M. O'Connell ◽  
Charles W. Andrews ◽  
Matthew A. Zurenski ◽  
Toni Darville

ABSTRACTOur previous studies revealed that intravaginal infection of mice with a plasmid-deficient strain ofChlamydia muridarum, CM3.1, does not induce the development of oviduct pathology. In this study, we determined that infection with CM3.1 resulted in a significantly reduced frequency and absolute number of neutrophils in the oviducts during acute infection. This reduction in neutrophils was associated with significantly lower levels of neutrophil chemokines in the oviducts and decreased production of neutrophil chemokines by oviduct epithelial cells infected with CM3.1in vitro. Infection with CM3.1 also resulted in an increased frequency of late apoptotic/dead neutrophils in the oviduct. Examination of the ability ofChlamydia trachomatisto prevent neutrophil apoptosisin vitrorevealed thatC. trachomatisstrain D/UW-3/Cx exhibited an enhanced ability to prevent neutrophil apoptosis compared to plasmid-deficient CTD153, and this effect was dependent on the presence of CD14highmonocytes. The presence of monocytes also resulted in enhanced neutrophil cytokine production and increased production of tissue-damaging molecules in response to D/UW-3/Cx relative to results with CTD153. Attempts to use antibody-mediated depletion to discern the specific role of neutrophils in infection control and pathologyin vivorevealed that although Ly6Ghighneutrophils were eliminated from the blood and oviducts with this treatment, immature neutrophils and high levels of tissue-damaging molecules were still detectable in the upper genital tract. These data support the role of neutrophils in chlamydia-induced pathology and reveal that novel methods of depletion must be developed before their role can be specifically determinedin vivo.


2015 ◽  
Vol 59 (11) ◽  
pp. 6939-6945 ◽  
Author(s):  
Imaan Benmerzouga ◽  
Lisa A. Checkley ◽  
Michael T. Ferdig ◽  
Gustavo Arrizabalaga ◽  
Ronald C. Wek ◽  
...  

ABSTRACTToxoplasma gondiiis a protozoan parasite that persists as a chronic infection.Toxoplasmaevades immunity by forming tissue cysts, which reactivate to cause life-threatening disease during immune suppression. There is an urgent need to identify drugs capable of targeting these latent tissue cysts, which tend to form in the brain. We previously showed that translational control is critical during infections with both replicative and latent forms ofToxoplasma. Here we report that guanabenz, an FDA-approved drug that interferes with translational control, has antiparasitic activity against replicative stages ofToxoplasmaand the related apicomplexan parasitePlasmodium falciparum(a malaria agent). We also found that inhibition of translational control interfered with tissue cyst biologyin vitro.Toxoplasmabradyzoites present in these abnormal cysts were diminished and misconfigured, surrounded by empty space not seen in normal cysts. These findings prompted analysis of the efficacy of guanabenzin vivoby using established mouse models of acute and chronic toxoplasmosis. In addition to protecting mice from lethal doses ofToxoplasma, guanabenz has a remarkable ability to reduce the number of brain cysts in chronically infected mice. Our findings suggest that guanabenz can be repurposed into an effective antiparasitic with a unique ability to reduce tissue cysts in the brain.


2007 ◽  
Vol 75 (8) ◽  
pp. 3715-3721 ◽  
Author(s):  
J. Andy Schaber ◽  
W. Jeffrey Triffo ◽  
Sang Jin Suh ◽  
Jeffrey W. Oliver ◽  
Mary Catherine Hastert ◽  
...  

ABSTRACT Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 h of infection in thermally injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections as well. Using light, electron, and confocal scanning laser microscopy, P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild-type and QS-deficient P. aeruginosa strains formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independently of QS.


2015 ◽  
Vol 83 (6) ◽  
pp. 2409-2419 ◽  
Author(s):  
Diana Henke ◽  
Sebastian Rupp ◽  
Véronique Gaschen ◽  
Michael H. Stoffel ◽  
Joachim Frey ◽  
...  

Listeria monocytogenesrhombencephalitis is a severe progressive disease despite a swift intrathecal immune response. Based on previous observations, we hypothesized that the disease progresses by intra-axonal spread within the central nervous system. To test this hypothesis, neuroanatomical mapping of lesions, immunofluorescence analysis, and electron microscopy were performed on brains of ruminants with naturally occurring rhombencephalitis. In addition, infection assays were performed in bovine brain cell cultures. Mapping of lesions revealed a consistent pattern with a preferential affection of certain nuclear areas and white matter tracts, indicating thatListeria monocytogenesspreads intra-axonally within the brain along interneuronal connections. These results were supported by immunofluorescence and ultrastructural data localizingListeria monocytogenesinside axons and dendrites associated with networks of fibrillary structures consistent with actin tails.In vitroinfection assays confirmed that bacteria were moving within axon-like processes by employing their actin tail machinery. Remarkably,in vivo, neutrophils invaded the axonal space and the axon itself, apparently by moving between split myelin lamellae of intact myelin sheaths. This intra-axonal invasion of neutrophils was associated with various stages of axonal degeneration and bacterial phagocytosis. Paradoxically, the ensuing adaxonal microabscesses appeared to provide new bacterial replication sites, thus supporting further bacterial spread. In conclusion, intra-axonal bacterial migration and possibly also the innate immune response play an important role in the intracerebral spread of the agent and hence the progression of listeric rhombencephalitis.


Sign in / Sign up

Export Citation Format

Share Document