scholarly journals Crystal Structure of the New Investigational Drug Candidate VT-1598 in Complex with Aspergillus fumigatus Sterol 14α-Demethylase Provides Insights into Its Broad-Spectrum Antifungal Activity

2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Tatiana Y. Hargrove ◽  
Edward P. Garvey ◽  
William J. Hoekstra ◽  
Christopher M. Yates ◽  
Zdzislaw Wawrzak ◽  
...  

ABSTRACT Within the past few decades, the incidence and complexity of human fungal infections have increased, and therefore, the need for safer and more efficient, broad-spectrum antifungal agents is high. In the study described here, we characterized the new tetrazole-based drug candidate VT-1598 as an inhibitor of sterol 14α-demethylase (CYP51B) from the filamentous fungus Aspergillus fumigatus. VT-1598 displayed a high affinity of binding to the enzyme in solution (dissociation constant, 13 ± 1 nM) and in the reconstituted enzymatic reaction was revealed to have an inhibitory potency stronger than the potencies of all other simultaneously tested antifungal drugs, including fluconazole, voriconazole, ketoconazole, and posaconazole. The X-ray structure of the VT-1598/A. fumigatus CYP51 complex was determined and depicts the distinctive binding mode of the inhibitor in the enzyme active site, suggesting the molecular basis of the improved drug potency and broad-spectrum antifungal activity. These data show the formation of an optimized hydrogen bond between the phenoxymethyl oxygen of VT-1598 and the imidazole ring nitrogen of His374, the CYP51 residue that is highly conserved across fungal pathogens and fungus specific. Comparative structural analysis of A. fumigatus CYP51/voriconazole and Candida albicans CYP51/VT-1161 complexes supports the role of H bonding in fungal CYP51/inhibitor complexes and emphasizes the importance of an optimal distance between this interaction and the inhibitor-heme iron interaction. Cellular experiments using two A. fumigatus strains (strains 32820 and 1022) displayed a direct correlation between the effects of the drugs on CYP51B activity and fungal growth inhibition, indicating the noteworthy anti-A. fumigatus potency of VT-1598 and confirming its promise as a broad-spectrum antifungal agent.

2020 ◽  
Vol 64 (3) ◽  
Author(s):  
Marhiah C. Montoya ◽  
Sarah Beattie ◽  
Kathryn M. Alden ◽  
Damian J. Krysan

ABSTRACT The antifungal pharmacopeia is critically small, particularly in light of the recent emergence of multidrug-resistant pathogens, such as Candida auris. Here, we report that derivatives of the antimalarial drug mefloquine have broad-spectrum antifungal activity against pathogenic yeasts and molds. In addition, the mefloquine derivatives have activity against clinical isolates that are resistant to one or more of the three classes of antifungal drugs currently used to treat invasive fungal infections, indicating that they have a novel mechanism of action. Importantly, the in vitro toxicity profiles obtained using human cell lines indicated that the toxicity profiles of the mefloquine derivatives are very similar to those of the parent mefloquine, despite being up to 64-fold more active against fungal cells. In addition to direct antifungal activity, subinhibitory concentrations of the mefloquine derivatives inhibited the expression of virulence traits, including filamentation in Candida albicans and capsule formation/melanization in Cryptococcus neoformans. Mode/mechanism-of-action experiments indicated that the mefloquine derivatives interfere with both mitochondrial and vacuolar function as part of a multitarget mechanism of action. The broad-spectrum scope of activity, blood-brain barrier penetration, and large number of previously synthesized analogs available combine to support the further optimization and development of the antifungal activity of this general class of drug-like molecules.


2020 ◽  
Author(s):  
Angelo Frei ◽  
A. Paden King ◽  
Gabrielle J. Lowe ◽  
Amy K. Cain ◽  
Francesca L. Short ◽  
...  

Resistance to currently available antifungal drugs has quietly been on the rise but overshadowed by the alarming spread of antibacterial resistance. There is a striking lack of attention to the threat of drug resistant fungal infections, with only a handful of new drugs currently in development. Given that metal complexes have proven to be useful new chemotypes in the fight against diseases such as cancer, malaria, and bacterial infections, it stands to reason to explore their possible utility in treating fungal infections. Herein we report a series of cobalt(III) Schiff base complexes with broad spectrum antifungal activity. Some of these complexes (1-3) show minimum inhibitory concentrations (MIC) in the low micro- to nanomolar range against a series of Candida and Cryptococcus yeasts. Additionally, we demonstrate that these compounds show no cytotoxicity against both bacterial and human cells. Finally, we report first in vivo toxicity data on these compounds in Galleria mellonella, showing that doses as high as 266 mg/kg are tolerated without adverse effects, paving the way for further in vivo studies of these complexes. <br>


2019 ◽  
Vol 85 (9) ◽  
Author(s):  
Xiaodan Li ◽  
Yikui Li ◽  
Ren Wang ◽  
Qizhi Wang ◽  
Ling Lu

ABSTRACTFungal infections not only cause extensive agricultural damage but also result in serious diseases in the immunodeficient populations of human beings. Moreover, the increasing emergence of drug resistance has led to a decrease in the efficacy of current antifungals. Thus, screening of new antifungal agents is imperative in the fight against antifungal drug resistance. In this study, we show that an endophytic bacterium,Burkholderia gladioliHDXY-02, isolated from the medicinal plantLycoris aurea, showed broad-spectrum antifungal activity against plant and human fungal pathogens. An antifungal ability assay indicated that the bioactive component was produced from strain HDXY-02 having an extracellular secreted component with a molecular weight lower than 1,000 Da. In addition, we found that this new antifungal could be produced effectively by liquid fermentation of HDXY-02. Furthermore, the purified component contributing to the antifungal activity was identified to be toxoflavin, a yellow compound possessing a pyrimido[5,4-e][1,2,4]triazine ring.In vitrobioactivity studies demonstrated that purified toxoflavin fromB. gladioliHDXY-02 cultures had a significant antifungal activity against the human fungal pathogenAspergillus fumigatus, resulting in abolished germination of conidia. More importantly, the growth inhibition by toxoflavin was observed in both wild-type and drug-resistant mutants (cyp51Aand non-cyp51A) ofA. fumigatus. Finally, an optimized protocol for the large-scale production of toxoflavin (1,533 mg/liter) has been developed. Taken together, our findings provide a promising biosynthetic resource for producing a new antifungal reagent, toxoflavin, from isolates of the endophytic bacteriumB. gladioli.IMPORTANCEHuman fungal infections are a growing problem associated with increased morbidity and mortality. Moreover, a growing number of antifungal-resistant fungal isolates have been reported over the past decade. Thus, the need for novel antifungal agents is imperative. In this study, we show that an endophytic bacterium,Burkholderia gladioli, isolated from the medicinal plantLycoris aurea, is able to abundantly secrete a compound, toxoflavin, which has a strong fungicidal activity not only against plant fungal pathogens but also against human fungal pathogensAspergillus fumigatusandCandida albicans,Cryptococcus neoformans, and the model filamentous fungusAspergillus nidulans. More importantly, toxoflavin also displays an efficacious inhibitory effect against azole antifungal-resistant mutants ofA. fumigatus. Consequently, our findings provide a promising approach to abundantly produce toxoflavin, which has novel broad-spectrum antifungal activity, especially against those currently problematic drug-resistant isolates.


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 354 ◽  
Author(s):  
Hilania Valéria Dodou Lima ◽  
Carolina Sidrim de Paula Cavalcante ◽  
Gandhi Rádis-Baptista

Venoms from ants comprise a rich source of bioactive peptides, including antimicrobial peptides. From the proteome and peptidome of the giant ant Dinoponera quadriceps venom, members of five known classes of antimicrobial peptides were disclosed (e.g., dermaseptin-, defensin-, ICK-, pilosulin- and ponericin-like types). Based on comparative analysis, these family members have structural determinants that indicate they could display antimicrobial activities. In previous works, pilosulin- and ponericin-like peptides were demonstrated to be active against bacteria, fungi, and parasites. Herein, the antifungal activity of ponericin- and pilosulin-like peptides were assessed, aiming at the expansion of the knowledge about AMPs in predatory ants and the development of new microbicide strategies to deal with difficult-to-treat fungal infections. Synthetic pilosulin- (Dq-2562, Dq-1503, and Dq-1319) and ponericin-like (Dq-3162) peptides were evaluated for their fungicide and fungistatic activities against different species of Candida, including a drug-resistant clinical strain. The MICs and MLCs were determined for all peptides individually and in combination with general antifungal drugs by the microdilution method. The time-kill kinetic curves were set up by means of a luminescent reagent, of which the light signal is proportional to the number of viable cells. The candicidal synergism observed by the combination of subinhibitory concentrations of peptides and general antimycotic drugs were quantified by the checkerboard test and fluorescent dye permeation assay. The influence of ergosterol on the antifungal activity was verified by supplementation of culture medium. The pilosulin- (Dq-2562 and Dq-1503) and ponericin-like (Dq-3162) were the most active peptides, displaying a broad spectrum of antifungal activity in vitro, with MICs in the range of 0.625 to 10 µM. The combination of peptides and conventional antimycotic drugs displayed a synergistic reduction in the MIC values of individual peptides and drugs, while soluble ergosterol in the culture medium increased the MICs. The fungicide and fungistatic activity of the individual peptides and peptides in combination with antimycotics were time-dependent with a rapid onset of action and long-lasting effect, which involved membrane disruption as an underlying mechanism of their action. Altogether, pilosulin- and ponericin-like peptides from the giant ant D. quadriceps venom display a broad-spectrum of candicidal activity, what allows their inclusion in the row of the antifungal peptides and gives support for further studies on the development of strategies to fight candidiasis.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3853 ◽  
Author(s):  
Eftichia Kritsi ◽  
Minos-Timotheos Matsoukas ◽  
Constantinos Potamitis ◽  
Anastasia Detsi ◽  
Marija Ivanov ◽  
...  

The prevalence of invasive fungal infections has been dramatically increased as the size of the immunocompromised population worldwide has grown. Aspergillus fumigatus is characterized as one of the most widespread and ubiquitous fungal pathogens. Among antifungal drugs, azoles have been the most widely used category for the treatment of fungal infections. However, increasingly, azole-resistant strains constitute a major problem to be faced. Towards this direction, our study focused on the identification of compounds bearing novel structural motifs which may evolve as a new class of antifungals. To fulfil this scope, a combination of in silico techniques and in vitro assays were implemented. Specifically, a ligand-based pharmacophore model was created and served as a 3D search query to screen the ZINC chemical database. Additionally, molecular docking and molecular dynamics simulations were used to improve the reliability and accuracy of virtual screening results. In total, eight compounds, bearing completely different chemical scaffolds from the commercially available azoles, were proposed and their antifungal activity was evaluated using in vitro assays. Results indicated that all tested compounds exhibit antifungal activity, especially compounds 1, 2, and 4, which presented the most promising minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values and, therefore, could be subjected to further hit to lead optimization.


2004 ◽  
Vol 3 (4) ◽  
pp. 932-943 ◽  
Author(s):  
Andrea Sussman ◽  
Karen Huss ◽  
Li-Chun Chio ◽  
Steve Heidler ◽  
Margaret Shaw ◽  
...  

ABSTRACT The Pkc1-mediated cell wall integrity-signaling pathway is highly conserved in fungi and is essential for fungal growth. We thus explored the potential of targeting the Pkc1 protein kinase for developing broad-spectrum fungicidal antifungal drugs through a Candida albicans Pkc1-based high-throughput screening. We discovered that cercosporamide, a broad-spectrum natural antifungal compound, but previously with an unknown mode of action, is actually a selective and highly potent fungal Pkc1 kinase inhibitor. This finding provides a molecular explanation for previous observations in which Saccharomyces cerevisiae cell wall mutants were found to be highly sensitive to cercosporamide. Indeed, S. cerevisiae mutant cells with reduced Pkc1 kinase activity become hypersensitive to cercosporamide, and this sensitivity can be suppressed under high-osmotic growth conditions. Together, the results demonstrate that cercosporamide acts selectively on Pkc1 kinase and, thus, they provide a molecular mechanism for its antifungal activity. Furthermore, cercosporamide and a β-1,3-glucan synthase inhibitor echinocandin analog, by targeting two different key components of the cell wall biosynthesis pathway, are highly synergistic in their antifungal activities. The synergistic antifungal activity between Pkc1 kinase and β-1,3-glucan synthase inhibitors points to a potential highly effective combination therapy to treat fungal infections.


2020 ◽  
Author(s):  
Angelo Frei ◽  
A. Paden King ◽  
Gabrielle J. Lowe ◽  
Amy K. Cain ◽  
Francesca L. Short ◽  
...  

Resistance to currently available antifungal drugs has quietly been on the rise but overshadowed by the alarming spread of antibacterial resistance. There is a striking lack of attention to the threat of drug resistant fungal infections, with only a handful of new drugs currently in development. Given that metal complexes have proven to be useful new chemotypes in the fight against diseases such as cancer, malaria, and bacterial infections, it stands to reason to explore their possible utility in treating fungal infections. Herein we report a series of cobalt(III) Schiff base complexes with broad spectrum antifungal activity. Some of these complexes (1-3) show minimum inhibitory concentrations (MIC) in the low micro- to nanomolar range against a series of Candida and Cryptococcus yeasts. Additionally, we demonstrate that these compounds show no cytotoxicity against both bacterial and human cells. Finally, we report first in vivo toxicity data on these compounds in Galleria mellonella, showing that doses as high as 266 mg/kg are tolerated without adverse effects, paving the way for further in vivo studies of these complexes. <br>


2013 ◽  
Vol 57 (8) ◽  
pp. 3681-3687 ◽  
Author(s):  
Samuel A. Siles ◽  
Anand Srinivasan ◽  
Christopher G. Pierce ◽  
José L. Lopez-Ribot ◽  
Anand K. Ramasubramanian

ABSTRACTCandida albicansis the most common etiologic agent of systemic fungal infections with unacceptably high mortality rates. The existing arsenal of antifungal drugs is very limited and is particularly ineffective againstC. albicansbiofilms. To address the unmet need for novel antifungals, particularly those active against biofilms, we have screened a small molecule library consisting of 1,200 off-patent drugs already approved by the Food and Drug Administration (FDA), the Prestwick Chemical Library, to identify inhibitors ofC. albicansbiofilm formation. According to their pharmacological applications that are currently known, we classified these bioactive compounds as antifungal drugs, as antimicrobials/antiseptics, or as miscellaneous drugs, which we considered to be drugs with no previously characterized antifungal activity. Using a 96-well microtiter plate-based high-content screening assay, we identified 38 pharmacologically active agents that inhibitC. albicansbiofilm formation. These drugs were subsequently tested for their potency and efficacy against preformed biofilms, and we identified three drugs with novel antifungal activity. Thus, repurposing FDA-approved drugs opens up a valuable new avenue for identification and potentially rapid development of antifungal agents, which are urgently needed.


2019 ◽  
Vol 15 (6) ◽  
pp. 648-658 ◽  
Author(s):  
Manzoor Ahmad Malik ◽  
Shabir Ahmad Lone ◽  
Parveez Gull ◽  
Ovas Ahmad Dar ◽  
Mohmmad Younus Wani ◽  
...  

Background: The increasing incidence of fungal infections, especially caused by Candida albicans, and their increasing drug resistance has drastically increased in recent years. Therefore, not only new drugs but also alternative treatment strategies are promptly required. Methods: We previously reported on the synergistic interaction of some azole and non-azole compounds with fluconazole for combination antifungal therapy. In this study, we synthesized some non-azole Schiff-base derivatives and evaluated their antifungal activity profile alone and in combination with the most commonly used antifungal drugs- fluconazole (FLC) and amphotericin B (AmB) against four drug susceptible, three FLC resistant and three AmB resistant clinically isolated Candida albicans strains. To further analyze the mechanism of antifungal action of these compounds, we quantified total sterol contents in FLC-susceptible and resistant C. albicans isolates. Results: A pyrimidine ring-containing derivative SB5 showed the most potent antifungal activity against all the tested strains. After combining these compounds with FLC and AmB, 76% combinations were either synergistic or additive while as the rest of the combinations were indifferent. Interestingly, none of the combinations was antagonistic, either with FLC or AmB. Results interpreted from fractional inhibitory concentration index (FICI) and isobolograms revealed 4-10-fold reduction in MIC values for synergistic combinations. These compounds also inhibit ergosterol biosynthesis in a concentration-dependent manner, supported by the results from docking studies. Conclusion: The results of the studies conducted advocate the potential of these compounds as new antifungal drugs. However, further studies are required to understand the other mechanisms and in vivo efficacy and toxicity of these compounds.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


Sign in / Sign up

Export Citation Format

Share Document