scholarly journals Activities of Combinations of Antistaphylococcal Antibiotics with Fusidic Acid against Staphylococcal Biofilms inIn VitroStatic and Dynamic Models

2018 ◽  
Vol 62 (7) ◽  
Author(s):  
Wafi Siala ◽  
Hector Rodriguez-Villalobos ◽  
Prabhavathi Fernandes ◽  
Paul M. Tulkens ◽  
Françoise Van Bambeke

ABSTRACTStaphylococcal biofilms are a major cause of therapeutic failure, especially when caused by multiresistant strains. Oral fusidic acid is currently being redeveloped in the United States for skin, skin structure, and orthopedic infections, in which biofilms play a major role. The aim of this study was to examine the activity of fusidic acid alone or combined with other antistaphylococcal drugs against biofilms made by a reference strain and five clinical isolates ofStaphylococcus aureusorStaphylococcus epidermidisinin vitrostatic and dynamic models (microtiter plates and a CDC reactor) exposed to clinically relevant concentrations. In microtiter plates, antibiotics alone were poorly active, with marked differences among strains. At concentrations mimicking the free-drug human maximum concentration of drug in serum (Cmax), the combination of fusidic acid with linezolid, daptomycin, or vancomycin resulted in increased activity against 4 to 5 strains, while the combination with doxycycline, rifampin, or moxifloxacin increased activity against 1 to 3 strains only. In the CDC reactor, biofilms were grown under constant flow and antibiotic concentrations decreased over time according to human elimination rates. A bactericidal effect was obtained when fusidic acid was combined with daptomycin or linezolid, but not with vancomycin. The higher tolerance of biofilms to antibiotics in the CDC reactor is probably attributable to the more complex architecture they adopt when growing under constant flow. Because biofilms grown in the CDC reactor are considered more similar to those developingin vivo, the data support further testing of combinations of fusidic acid with daptomycin or linezolid in models pertinent to chronic skin, skin structure, or orthopedic infections.

mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Susan Boyle-Vavra ◽  
Xue Li ◽  
Md Tauqeer Alam ◽  
Timothy D. Read ◽  
Julia Sieth ◽  
...  

ABSTRACTThe surface capsular polysaccharide (CP) is a virulence factor that has been used as an antigen in several successful vaccines against bacterial pathogens. A vaccine has not yet been licensed againstStaphylococcus aureus, although two multicomponent vaccines that contain CP antigens are in clinical trials. In this study, we evaluated CP production in USA300 methicillin-resistantS. aureus(MRSA) isolates that have become the predominant community-associated MRSA clones in the United States. We found that all 167 USA300 MRSA and 50 USA300 methicillin-susceptibleS. aureus(MSSA) isolates were CP negative (CP−). Moreover, all 16 USA500 isolates, which have been postulated to be the progenitor lineage of USA300, were also CP−. Whole-genome sequence analysis of 146 CP−USA300 MRSA isolates revealed they all carry acap5locus with 4 conserved mutations compared with strain Newman. Genetic complementation experiments revealed that three of these mutations (in thecap5promoter,cap5Dnucleotide 994, andcap5Enucleotide 223) ablated CP production in USA300 and that Cap5E75 Asp, located in the coenzyme-binding domain, is essential for capsule production. All but three USA300 MSSA isolates had the same fourcap5mutations found in USA300 MRSA isolates. Most isolates with a USA500 pulsotype carried three of these four USA300-specific mutations, suggesting the fourth mutation occurred in the USA300 lineage. Phylogenetic analysis of thecaploci of our USA300 isolates as well as publicly available genomes from 41 other sequence types revealed that the USA300-specificcap5mutations arose sequentially inS. aureusin a common ancestor of USA300 and USA500 isolates.IMPORTANCEThe USA300 MRSA clone emerged as a community-associated pathogen in the United States nearly 20 years ago. Since then, it has rapidly disseminated and now causes health care-associated infections. This study shows that the CP-negative (CP−) phenotype has persisted among USA300 isolates and is a universal and characteristic trait of this highly successful MRSA lineage. It is important to note that a vaccine consisting solely of CP antigens would not likely demonstrate high efficacy in the U.S. population, where about half of MRSA isolates comprise USA300. Moreover, conversion of a USA300 strain to a CP-positive (CP+) phenotype is unlikelyin vivoorin vitrosince it would require the reversion of 3 mutations. We have also established that USA300 MSSA isolates and USA500 isolates are CP−and provide new insight into the evolution of the USA300 and USA500 lineages.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Ryan C. Hunter ◽  
Fadi Asfour ◽  
Jozef Dingemans ◽  
Brenda L. Osuna ◽  
Tahoura Samad ◽  
...  

ABSTRACTChronic, biofilm-like infections by the opportunistic pathogenPseudomonas aeruginosaare a major cause of mortality in cystic fibrosis (CF) patients. While much is known aboutP. aeruginosafrom laboratory studies, far less is understood about what it experiencesin vivo. Iron is an important environmental parameter thought to play a central role in the development and maintenance ofP. aeruginosainfections, for both anabolic and signaling purposes. Previous studies have focused on ferric iron [Fe(III)] as a target for antimicrobial therapies; however, here we show that ferrous iron [Fe(II)] is abundant in the CF lung (~39 µM on average for severely sick patients) and significantly correlates with disease severity (ρ = −0.56,P= 0.004), whereas ferric iron does not (ρ = −0.28,P= 0.179). Expression of theP. aeruginosagenesbqsRS, whose transcription is upregulated in response to Fe(II), was high in the majority of patients tested, suggesting that increased Fe(II) is bioavailable to the infectious bacterial population. Because limiting Fe(III) acquisition inhibits biofilm formation byP. aeruginosain various oxicin vitrosystems, we also tested whether interfering with Fe(II) acquisition would improve biofilm control under anoxic conditions; concurrent sequestration of both iron oxidation states resulted in a 58% reduction in biofilm accumulation and 28% increase in biofilm dissolution, a significant improvement over Fe(III) chelation treatment alone. This study demonstrates that the chemistry of infected host environments coevolves with the microbial community as infections progress, which should be considered in the design of effective treatment strategies at different stages of disease.IMPORTANCEIron is an important environmental parameter that helps pathogens thrive in sites of infection, including those of cystic fibrosis (CF) patients. Ferric iron chelation therapy has been proposed as a novel therapeutic strategy for CF lung infections, yet until now, the iron oxidation state has not been measured in the host. In studying mucus from the infected lungs of multiple CF patients from Europe and the United States, we found that ferric and ferrous iron change in concentration and relative proportion as infections progress; over time, ferrous iron comes to dominate the iron pool. This information is relevant to the design of novel CF therapeutics and, more broadly, to developing accurate models of chronic CF infections.


2011 ◽  
Vol 55 (7) ◽  
pp. 3631-3634 ◽  
Author(s):  
David J. Farrell ◽  
Lisa C. Liverman ◽  
Douglas J. Biedenbach ◽  
Ronald N. Jones

ABSTRACTJNJ-Q2 is a broad-spectrum bactericidal fluoroquinolone with potent activity against Gram-positive and -negative pathogens. In this study, thein vitroactivity of JNJ-Q2 was evaluated against 511 selectedStaphylococcus aureussamples isolated in 2008-2009 from patients with acute bacterial skin and skin structure infections in the United States by using reference methodology. JNJ-Q2 was the most potent fluoroquinolone tested overall (MIC50and MIC90, 0.12 and 0.5 μg/ml, respectively) and against methicillin- and fluoroquinolone-resistant subgroups in direct comparisons to moxifloxacin, levofloxacin, and ciprofloxacin (each being ≥16-fold less potent than JNJ-Q2).


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Jun Taek Oh ◽  
Cara Cassino ◽  
Raymond Schuch

ABSTRACTCF-301 (exebacase) is a recombinantly produced bacteriophage-derived lysin (cell wall hydrolase) and is the first agent of this class to enter clinical development in the United States for treating bacteremia including endocarditis due toStaphylococcus aureus. Whereas rapid bactericidal activity is the hallmarkin vitroandin vivoresponse to CF-301 at exposures higher than the MIC, prolonged antimicrobial activity, mediated by cell wall damage, is predicted at concentrations less than the MIC. In the current study, a series ofin vitropharmacodynamic parameters, including the postantibiotic effect (PAE), postantibiotic sub-MIC effect (PA-SME), and sub-MIC effect (SME), were studied to determine how short-duration and sub-MIC CF-301 exposures affect the growth of surviving staphylococci and extend its antimicrobial activity. Mean PAE, PA-SME, and SME values up to 4.8, 9.3, and 9.8 h, respectively, were observed against 14 staphylococcal strains tested in human serum; growth delays were extended by 6 h in the presence of daptomycin. Exposures to CF-301 at sub-MIC levels as low as 0.001× to 0.01× MIC (∼1 to 10 ng/ml) resulted in aberrant cell wall ultrastructure, increased membrane permeability, dissipation of membrane potential, and inhibition of virulence phenotypes, including agglutination and biofilm formation. A mouse thigh infection model designed to study the PAE was used to confirm our findings and demonstratein vivogrowth delays of ≥19.3 h. Our findings suggest that at CF-301 concentrations less than the MIC during therapeutic use, sustained reductions in bacterial fitness and virulence may substantially enhance efficacy.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Kurt Selle ◽  
Joshua R. Fletcher ◽  
Hannah Tuson ◽  
Daniel S. Schmitt ◽  
Lana McMillan ◽  
...  

ABSTRACT Clostridioides difficile is an important nosocomial pathogen that causes approximately 500,000 cases of C. difficile infection (CDI) and 29,000 deaths annually in the United States. Antibiotic use is a major risk factor for CDI because broad-spectrum antimicrobials disrupt the indigenous gut microbiota, decreasing colonization resistance against C. difficile. Vancomycin is the standard of care for the treatment of CDI, likely contributing to the high recurrence rates due to the continued disruption of the gut microbiota. Thus, there is an urgent need for the development of novel therapeutics that can prevent and treat CDI and precisely target the pathogen without disrupting the gut microbiota. Here, we show that the endogenous type I-B CRISPR-Cas system in C. difficile can be repurposed as an antimicrobial agent by the expression of a self-targeting CRISPR that redirects endogenous CRISPR-Cas3 activity against the bacterial chromosome. We demonstrate that a recombinant bacteriophage expressing bacterial genome-targeting CRISPR RNAs is significantly more effective than its wild-type parent bacteriophage at killing C. difficile both in vitro and in a mouse model of CDI. We also report that conversion of the phage from temperate to obligately lytic is feasible and contributes to the therapeutic suitability of intrinsic C. difficile phages, despite the specific challenges encountered in the disease phenotypes of phage-treated animals. Our findings suggest that phage-delivered programmable CRISPR therapeutics have the potential to leverage the specificity and apparent safety of phage therapies and improve their potency and reliability for eradicating specific bacterial species within complex communities, offering a novel mechanism to treat pathogenic and/or multidrug-resistant organisms. IMPORTANCE Clostridioides difficile is a bacterial pathogen responsible for significant morbidity and mortality across the globe. Current therapies based on broad-spectrum antibiotics have some clinical success, but approximately 30% of patients have relapses, presumably due to the continued perturbation to the gut microbiota. Here, we show that phages can be engineered with type I CRISPR-Cas systems and modified to reduce lysogeny and to enable the specific and efficient targeting and killing of C. difficile in vitro and in vivo. Additional genetic engineering to disrupt phage modulation of toxin expression by lysogeny or other mechanisms would be required to advance a CRISPR-enhanced phage antimicrobial for C. difficile toward clinical application. These findings provide evidence into how phage can be combined with CRISPR-based targeting to develop novel therapies and modulate microbiomes associated with health and disease.


2015 ◽  
Vol 83 (9) ◽  
pp. 3428-3437 ◽  
Author(s):  
Adnan K. Syed ◽  
Tamra J. Reed ◽  
Kaitlyn L. Clark ◽  
Blaise R. Boles ◽  
J. Michelle Kahlenberg

Staphylococcus aureusis a human commensal that colonizes the skin. While it is normally innocuous, it has strong associations with atopic dermatitis pathogenesis and has become the leading cause of skin and soft tissue infections in the United States. The factors that dictate the role ofS. aureusin disease are still being determined. In this work, we utilized primary keratinocyte culture and an epidermal murine colonization model to investigate the role ofS. aureusphenol-soluble modulins (PSMs) in proinflammatory cytokine release and inflammation induction. We demonstrated that many species ofStaphylococcusare capable of causing release of interleukin 18 (IL-18) from keratinocytes and thatS. aureusPSMs are necessary and sufficient to stimulate IL-18 release from keratinocytes independently of caspase 1. Further, after 7 days of epicutaneous exposure to wild-typeS. aureus, but notS. aureusΔpsm, we saw dramatic changes in gross pathology, as well as systemic release of proinflammatory cytokines. This work demonstrates the importance of PSM peptides inS. aureus-mediated inflammatory cytokine release from keratinocytesin vitroandin vivoand further implicates PSMs as important contributors to pathogenesis.


2014 ◽  
Vol 81 (2) ◽  
pp. 502-514 ◽  
Author(s):  
Ying Cheng ◽  
Adriana Ayres Pedroso ◽  
Steffen Porwollik ◽  
Michael McClelland ◽  
Margie D. Lee ◽  
...  

ABSTRACTSalmonella entericaserovar Kentucky has become the most frequently isolated serovar from poultry in the United States over the past decade. Despite its prevalence in poultry, it causes few human illnesses in the United States. The dominance ofS. Kentucky in poultry does not appear to be due to single introduction of a clonal strain, and its reduced virulence appears to correlate with the absence of virulence genesgrvA,sseI,sopE, andsodC1. S. Kentucky's prevalence in poultry is possibly attributable to its metabolic adaptation to the chicken cecum. While there were no difference in the growth rate ofS. Kentucky andS. Typhimurium grown microaerophilically in cecal contents,S. Kentucky persisted longer when chickens were coinfected withS. Typhimurium. Thein vivoadvantage thatS. Kentucky has overS. Typhimurium appears to be due to differential regulation of coreSalmonellagenes via the stationary-phase sigma factorrpoS. Microarray analysis ofSalmonellagrown in cecal contentsin vitroidentified several metabolic genes and motility and adherence genes that are differentially activated inS. Kentucky. The contributions of four of these operons (mgl,prp,nar, andcsg) toSalmonellacolonization in chickens were assessed. Deletion ofmglandcsgreducedS. Kentucky persistence in competition studies in chickens infected with wild-type or mutant strains. Subtle mutations affecting differential regulation of coreSalmonellagenes appear to be important inSalmonella's adaptation to its animal host and especially forS. Kentucky's emergence as the dominant serovar in poultry.


2013 ◽  
Vol 57 (9) ◽  
pp. 4535-4536 ◽  
Author(s):  
D. F. Sahm ◽  
J. Deane ◽  
C. M. Pillar ◽  
P. Fernandes

ABSTRACTClinical development of CEM-102 (fusidic acid) has recently begun in the United States for chronic oral treatment of prosthetic joint infections. To support this development, thein vitroactivity of fusidic acid against importantStaphylococcus aureusclones and resistance phenotypes was determined. Against 51 such isolates, the modal fusidic acid MIC was 0.12 μg/ml (range, 0.06 to 0.25 μg/ml for 49 isolates). This level ofin vitrofusidic acid activity underscores the potential clinical utility of this compound in the United States.


2020 ◽  
Vol 8 (3) ◽  
pp. 336 ◽  
Author(s):  
Emilia Galdiero ◽  
Valeria Di Onofrio ◽  
Angela Maione ◽  
Edvige Gambino ◽  
Renato Gesuele ◽  
...  

The present study assesses the in vitro antibiofilm potential activity of extracts of wild Allium ursinum and Allium oschaninii. The active ingredients of the extracts were obtained with a technique named Naviglio (rapid solid–liquid dynamic extraction, RSLDE) which is based on an innovative and green solid–liquid extraction methodology. The extracts were tested against models of mono- and polymicrobial biofilm structures of clinically antibiotic-resistant pathogens, Klebsiella pneumoniae ATCC 10031 and Candida albicans ATCC 90028. Biofilms were studied using a static and a dynamic model (microtiter plates and a CDC reactor) on three different surfaces reproducing what happens on implantable medical devices. Antimicrobic activities were determined through minimum inhibitory concentration (MIC), while antibiofilm activity was assessed by minimum biofilm eradication concentration (MBEC) using a crystal violet (CV) biofilm assay and colony forming unit (CFU) counts. Results showed that both Allium extracts eradicated biofilms of the tested microorganisms well; biofilms on Teflon were more susceptible to extracts than those on polypropylene and polycarbonate, suggesting that when grown on a complex substrate, biofilms may be more tolerant to antibiotics. Our data provide significant advances on antibiotic susceptibility testing of biofilms grown on biologically relevant materials for future in vitro and in vivo applications.


2014 ◽  
Vol 58 (12) ◽  
pp. 7303-7311 ◽  
Author(s):  
Liudmila Kulakova ◽  
Andrey Galkin ◽  
Catherine Z. Chen ◽  
Noel Southall ◽  
Juan J. Marugan ◽  
...  

ABSTRACTGiardiasis is a severe intestinal parasitic disease caused byGiardia lamblia, which inflicts many people in poor regions and is the most common parasitic infection in the United States. Current standard care drugs are associated with undesirable side effects, treatment failures, and an increasing incidence of drug resistance. As follow-up to a high-throughput screening of an approved drug library, which identified compounds lethal toG. lambliatrophozoites, we have determined the minimum lethal concentrations of 28 drugs and advanced 10 of them toin vivostudies in mice. The results were compared to treatment with the standard care drug, metronidazole, in order to identify drugs with equal or better anti-Giardiaactivities. Three drugs, fumagillin, carbadox, and tioxidazole, were identified. These compounds were also potent against metronidazole-resistant humanG. lambliaisolates (assemblages A and B), as determined inin vitroassays. Of these three compounds, fumagillin is currently an orphan drug used within the European Union to treat microsporidiosis in immunocompromised individuals, whereas carbadox and tioxidazole are used in veterinary medicine. A dose-dependent study of fumagillin in a giardiasis mouse model revealed that the effective dose of fumagillin was ∼100-fold lower than the metronidazole dose. Therefore, fumagillin may be advanced to further studies as an alternative treatment for giardiasis when metronidazole fails.


Sign in / Sign up

Export Citation Format

Share Document