scholarly journals In Vivo Activity of Ceftobiprole in Murine Skin Infections Due to Staphylococcus aureus and Pseudomonas aeruginosa

2009 ◽  
Vol 54 (1) ◽  
pp. 116-125 ◽  
Author(s):  
Jeffrey Fernandez ◽  
Jamese J. Hilliard ◽  
Darren Abbanat ◽  
Wenyan Zhang ◽  
John L. Melton ◽  
...  

ABSTRACT Ceftobiprole, a broad-spectrum cephalosporin with activity against methicillin-resistant Staphylococcus aureus (MRSA) (P. Hebeisen et al., Antimicrob. Agents Chemother. 45:825-836, 2001), was evaluated in a subcutaneous skin infection model with Staphylococcus aureus Smith OC 4172 (methicillin-susceptible S. aureus [MSSA]), S. aureus OC 8525 (MRSA), Pseudomonas aeruginosa OC 4351 (having an inducible AmpC β-lactamase), and P. aeruginosa OC 4354 (overproducing AmpC β-lactamase). In the MSSA and MRSA infection models, ceftobiprole, administered as the prodrug ceftobiprole medocaril, was more effective in reducing CFU/g skin (P < 0.001) than were cefazolin, vancomycin, or linezolid based on the dose-response profiles. Skin lesion volumes in MSSA-infected animals treated with ceftobiprole were 19 to 29% lower than those for cefazolin-, vancomycin-, or linezolid-treated animals (P < 0.001). In MRSA infections, lesion size in ceftobiprole-treated mice was 34% less than that with cefazolin or linezolid treatment (P < 0.001). Against P. aeruginosa, ceftobiprole at similar doses was as effective as meropenem-cilastatin in reductions of CFU/g skin, despite 8- and 32-fold-lower MICs for meropenem; both treatments were more effective than was cefepime (P < 0.001) against the inducible and overproducing AmpC β-lactamase strains of P. aeruginosa. Ceftobiprole was similar to meropenem-cilastatin and 47 to 54% more effective than cefepime (P < 0.01) in reducing the size of the lesion caused by either strain of P. aeruginosa in this study. These studies indicate that ceftobiprole is effective in reducing both bacterial load and lesion volume associated with infections due to MSSA, MRSA, and P. aeruginosa in this murine model of skin and soft tissue infection.

2010 ◽  
Vol 54 (12) ◽  
pp. 5115-5119 ◽  
Author(s):  
Jared L. Crandon ◽  
Joseph L. Kuti ◽  
David P. Nicolau

ABSTRACT Telavancin displays potent in vitro and in vivo activity against methicillin-resistant Staphylococcus aureus (MRSA), including strains with reduced susceptibility to vancomycin. We compared the efficacies of telavancin and vancomycin against MRSA strains with vancomycin MICs of ≥1 μg/ml in a neutropenic murine lung infection model. Thirteen clinical MRSA isolates (7 vancomycin-susceptible, 2 vancomycin-heteroresistant [hVISA], and 4 vancomycin-intermediate [VISA] isolates) were tested after 24 h, and 7 isolates (1 hVISA and 4 VISA isolates) were tested after 48 h of exposure. Mice were administered subcutaneous doses of telavancin at 40 mg/kg of body weight every 12 h (q12h) or of vancomycin at 110 mg/kg q12h; doses were designed to simulate the area under the concentration-time curve for the free, unbound fraction of drug (fAUC) observed for humans given telavancin at 10 mg/kg q24h or vancomycin at 1 g q12h. Efficacy was expressed as the 24- or 48-h change in lung bacterial density from pretreatment counts. At dose initiation, the mean bacterial load was 6.16 ± 0.26 log10 CFU/ml, which increased by averages of 1.26 ± 0.55 and 1.74 ± 0.68 log in untreated mice after 24 and 48 h, respectively. At both time points, similar CFU reductions were noted for telavancin and vancomycin against MRSA, with vancomycin MICs of ≤2 μg/ml. Both drugs were similarly efficacious after 24 and 48 h of treatment against the hVISA strains tested. Against VISA isolates, telavancin reduced bacterial burdens significantly more than vancomycin for 1 of 4 isolates after 24 h and for 3 of 4 isolates after 48 h. These data support the potential utility of telavancin for the treatment of MRSA pneumonia caused by pathogens with reduced susceptibility to vancomycin.


Author(s):  
Shannon R Coleman ◽  
Daniel Pletzer ◽  
Robert E W Hancock

Abstract Swarming motility in Pseudomonas aeruginosa is a multicellular adaptation induced by semisolid medium with amino acids as a nitrogen source. By phenotypic screening, we differentiated swarming from other complex adaptive phenotypes, such as biofilm formation, swimming and twitching, by identifying a swarming-specific mutant in ptsP, a metabolic regulator. This swarming-deficient mutant was tested in an acute murine skin abscess infection model. Bacteria were recovered at significantly lower numbers from organs of mice infected with the ∆ptsP mutant. We also tested the synthetic peptide 1018 for activity against different motilities and efficacy in vivo. Treatment with 1018 mimicked the phenotype of the ∆ptsP mutant in vitro, as swarming was inhibited at low concentrations (&lt;2 μg/mL) but not swimming or twitching, and in vivo, as mice had a reduced bacterial load recovered from organs. Therefore, PtsP functions as a regulator of swarming, which in turn contributes to dissemination and colonization in vivo.


2003 ◽  
Vol 47 (8) ◽  
pp. 2507-2512 ◽  
Author(s):  
Masakatsu Tsuji ◽  
Morio Takema ◽  
Hideaki Miwa ◽  
Jingoro Shimada ◽  
Shogo Kuwahara

ABSTRACT The in vivo antibacterial activity of S-3578, a new parental cephalosporin, was compared with those of cefepime, ceftriaxone, ceftazidime, imipenem-cilastatin, and vancomycin. The efficacy of S-3578 against systemic infections caused by methicillin-resistant Staphylococcus aureus (MRSA) SR3637 (50% effective dose [ED50], 7.21 mg/kg of body weight) was almost the same as that of vancomycin. In contrast, cefepime and imipenem-cilastatin were less active against this pathogen (ED50s, >100 and >100 mg/kg, respectively). S-3578 was the most effective compound against penicillin-resistant Streptococcus pneumoniae SR20946 (ED50, 1.98 mg/kg). S-3578 (10 mg/kg) induced a significant reduction in the numbers of viable MRSA SR17764 and Pseudomonas aeruginosa SR10396 organisms in polymicrobial pulmonary infections. The therapeutic efficacy of S-3578 was more potent than that of the combination of vancomycin and ceftazidime. High levels of S-3578 were detected in plasma in vivo, and its efficacy against experimentally induced infections in mice caused by MRSA and P. aeruginosa reflected its potent in vitro activity. We conclude that S-3578 is a promising new cephalosporin for the treatment of infections caused by gram-positive and -negative bacteria, including MRSA and P. aeruginosa.


2004 ◽  
Vol 48 (4) ◽  
pp. 1118-1123 ◽  
Author(s):  
Daniela Jabés ◽  
Gianpaolo Candiani ◽  
Gabriella Romanó ◽  
Cristina Brunati ◽  
Simona Riva ◽  
...  

ABSTRACT Infections due to methicillin-resistant Staphylococcus aureus (MRSA) are an important cause of morbidity and mortality in hospital patients. Moreover, increased incidences of outpatient MRSA have been recently reported. This study investigated the bactericidal activity of dalbavancin, a novel, semisynthetic glycopeptide antibiotic, against methicillin-sensitive S. aureus (MSSA) and MRSA in the rat granuloma pouch infection model. A single intravenous dose of 10 mg of dalbavancin/kg of body weight reduced the viable MRSA count in pouch exudates by more than 2 log CFU/ml, and regrowth was prevented for up to 120 h. Comparable results with vancomycin required four 100-mg/kg intramuscular doses. With one or two doses of vancomycin, the bacterial load declined over proportionately shorter periods of time, followed by regrowth. Reduction of the bacterial load obtained with 100- and 200-mg/kg oral doses of linezolid was relatively transient, with regrowth starting at 48 h. A single 10-mg/kg dose of dalbavancin reduced the MSSA count at 24 h to below the limit of detection, with no regrowth for at least 96 h. Dalbavancin demonstrated good exudate penetration; the ratio of the area under the curve (AUC) in plasma to the AUC in pouch exudate was 1.01. The in vivo activity of dalbavancin in this model is consistent with the antibiotic concentrations that are reached and maintained for extended periods of time after a single 10-mg/kg dose and with in vitro data showing that these concentrations are bactericidal for staphylococci. The pharmacokinetic and efficacy data seen in this relevant model of infection suggest that dalbavancin may be administered less frequently than vancomycin and linezolid.


2010 ◽  
Vol 54 (12) ◽  
pp. 5298-5302 ◽  
Author(s):  
Kiyoshi Sugihara ◽  
Chika Sugihara ◽  
Yoko Matsushita ◽  
Naotoshi Yamamura ◽  
Mitsutoshi Uemori ◽  
...  

ABSTRACT Tomopenem (formerly CS-023) is a novel carbapenem with broad-spectrum activities against diverse hospital pathogens, including Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA). We examined the in vivo pharmacodynamic characteristics of tomopenem against P. aeruginosa and MRSA by using a neutropenic murine thigh infection model with P. aeruginosa 12467 (MIC, 1 μg/ml) and MRSA 12372 (MIC, 2 μg/ml). The mice had 106 to 107 CFU/thigh of each strain 2 h after inoculation and were treated for 24 h with a fractionated administration of tomopenem given at intervals of 3, 6, 12, and 24 h. The serum protein binding of tomopenem was 17.4%. The efficacy of tomopenem in both infection models was enhanced by frequent dosing, which indicates that the efficacy is driven by the time above MIC (T MIC). In a sigmoid model, the cumulative percentages of the 24-h period that the concentrations of free, unbound fractions of the drug exceeded the MIC under steady-state pharmacokinetic conditions (f%T MICs) were best correlated with efficacy when R 2 was 0.79 and 0.86 against P. aeruginosa and MRSA, respectively. Other pharmacokinetic and pharmacodynamic (PK-PD) indexes for the free, unbound fractions, the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC) and the maximum concentration of the drug in serum divided by the MIC (C max/MIC), showed poor correlation with efficacy when R 2 was ≤0.42. The f%T MIC values required for a static effect, 1-log kill, and 2-log kill against P. aeruginosa were 29, 39, and 51, respectively, which were similar to those for meropenem, for which the values were 24, 33, and 45, respectively. Against MRSA, the values for tomopenem were 27, 35, and 47. In conclusion, the pharmacodynamic characteristics of tomopenem were similar to those of meropenem against P. aeruginosa, and there was no difference between the target values for P. aeruginosa and MRSA required for efficacy in this study.


2006 ◽  
Vol 50 (7) ◽  
pp. 2352-2360 ◽  
Author(s):  
N. McCallum ◽  
H. Karauzum ◽  
R. Getzmann ◽  
M. Bischoff ◽  
P. Majcherczyk ◽  
...  

ABSTRACT Glycopeptide resistance, in a set of in vitro step-selected teicoplanin-resistant mutants derived from susceptible Staphylococcus aureus SA113, was associated with slower growth, thickening of the bacterial cell wall, increased N-acetylglucosamine incorporation, and decreased hemolysis. Differential transcriptome analysis showed that as resistance increased, some virulence-associated genes became downregulated. In a mouse tissue cage infection model, an inoculum of 104 CFU of strain SA113 rapidly produced a high-bacterial-load infection, which triggered MIP-2 release, leukocyte infiltration, and reduced leukocyte viability. In contrast, with the same inoculum of the isogenic glycopeptide-resistant derivative NM67, CFU initially decreased, resulting in the elimination of the mutant in three out of seven cages. In the four cages in which NM67 survived, it partially regained wild-type characteristics, including thinning of the cell wall, reduced N-acetylglucosamine uptake, and increased hemolysis; however, the survivors also became teicoplanin hypersusceptible. The elimination of the teicoplanin-resistant mutants and selection of teicoplanin-hypersusceptible survivors in the tissue cages indicated that glycopeptide resistance imposes a fitness burden on S. aureus and is selected against in vivo, with restoration of fitness incurring the price of resistance loss.


2020 ◽  
Author(s):  
Hyung Jun Kim ◽  
Hyunjung Lee ◽  
Yunmi Lee ◽  
Inhee Choi ◽  
Yoonae Ko ◽  
...  

ABSTRACTThiamine pyrophosphate (TPP) is an essential cofactor for various pivotal cellular processes in all living organisms, including bacteria. As thiamine biosynthesis occurs in bacteria but not humans, bacterial thiamine biosynthesis is an attractive target for antibiotic development. Among enzymes in the thiamine biosynthetic pathway, thiamine monophosphate kinase (ThiL) catalyzes the final step of the pathway, phosphorylating thiamine monophosphate (TMP) to produce TPP. In this work, we extensively investigated ThiL in Pseudomonas aeruginosa, a major pathogen of hospital-acquired infections. We demonstrated that thiL deletion abolishes not only thiamine biosynthesis but also thiamine salvage capability, showing growth defects of the ΔthiL mutant even in the presence of thiamine derivatives except TPP. Most importantly, the pathogenesis of the ΔthiL mutant was markedly attenuated compared to wild-type bacteria, with lower inflammatory cytokine induction and 103~104 times decreased bacterial load in an in vivo infection model where the intracellular TPP level is in the submicromolar range. In order to validate P. aeruginosa ThiL (PaThiL) as a new drug target, we further characterized its biochemical properties determining a Vmax of 4.0±0.2 nomol·min−1 and KM values of 111±8 and 8.0±3.5μM for ATP and TMP, respectively. A subsequent in vitro small molecule screening identified PaThiL inhibitors including WAY213613 that is a noncompetitive inhibitor with a Ki value of 13.4±2.3 μM and a potential antibacterial activity against P. aeruginosa. This study proved that PaThiL is a new drug target against P. aeruginosa providing comprehensive biological and biochemical data that could facilitate to develop a new repertoire of antibiotics.


2016 ◽  
Vol 60 (9) ◽  
pp. 5581-5588 ◽  
Author(s):  
Jeshina Janardhanan ◽  
Jayda E. Meisel ◽  
Derong Ding ◽  
Valerie A. Schroeder ◽  
William R. Wolter ◽  
...  

ABSTRACTThe oxadiazole antibacterials target the bacterial cell wall and are bactericidal. We investigated the synergism of ND-421 with the commonly used β-lactams and non-β-lactam antibiotics by the checkerboard method and by time-kill assays. ND-421 synergizes well with β-lactam antibiotics, and it also exhibits a long postantibiotic effect (4.7 h). We also evaluated thein vivoefficacy of ND-421 in a murine neutropenic thigh infection model alone and in combination with oxacillin. ND-421 hasin vivoefficacy by itself in a clinically relevant infection model (1.49 log10bacterial reduction for ND-321 versus 0.36 log10for linezolid with NRS119) and acts synergistically with β-lactam antibioticsin vitroandin vivo, and the combination of ND-421 with oxacillin is efficacious in a mouse neutropenic thigh methicillin-resistantStaphylococcus aureus(MRSA) infection model (1.60 log10bacterial reduction). The activity of oxacillin was potentiated in the presence of ND-421, as the strain would have been resistant to oxacillin otherwise.


2019 ◽  
Vol 26 (4) ◽  
pp. 163
Author(s):  
Firzan Nainu ◽  
Rangga Meidianto Asri ◽  
M. Natsir Djide ◽  
Muhammad Ahsan ◽  
Rudi Arfiansyah ◽  
...  

The emergence of antibiotic-resistant Pseudomonas aeruginosa is one of main health issues in global communities. To overcome such threat, the discovery of novel antibacterial agents is indispensable. This study aimed to evaluate the in vivo antipseudomonal activity of Ulva reticulata extract in Drosophila model of infection. Ethanolic extract of Ulva reticulata was prepared using maceration method and the extract was subsequently assessed for its in vivo antibacterial effect against P. aeruginosa using survival assay, bacterial load enumeration, and gene expression analysis in the wildtype Drosophila. Survival and bacterial load analysis were further performed in a similar fashion on the mutant flies devoid of component responsible in the activation of immune responses against P. aeruginosa. Decline in the survival of infected host accompanied by augmentation of bacterial proliferation was documented in the wildtype Drosophila upon infection with P. aeruginosa. These phenotypic events were further amplified in immune-deficient mutant Drosophila. Nevertheless, improvement of host survivorship and reduction of bacterial burden were demonstrated in both wildtype or immune-deficient mutant flies upon treatment with Ulva reticulata extract after bacterial challenge. Our data demonstrated in vivo antipseudomonal activity of Ulva reticulata extract and thus provide a valuable information about its future potential for health promotion.


2006 ◽  
Vol 50 (4) ◽  
pp. 1376-1383 ◽  
Author(s):  
D. Andes ◽  
W. A. Craig

ABSTRACT PPI-0903 is a new cephalosporin with broad-spectrum activity, including beta-lactam-resistant Streptococcus pneumoniae and Staphylococcus aureus. We used the neutropenic murine thigh and lung infection models to examine the pharmacodynamic characteristics of PPI-0903. Serum drug levels following four fourfold-escalating single doses of PPI-0903 were measured by microbiologic assay. In vivo postantibiotic effects (PAEs) were determined after doses of 1.56, 6.25, 25, and 100 mg/kg of body weight in mice infected with S. pneumoniae ATCC 10813, S. aureus ATCC 29213, or Escherichia coli ATCC 25922. Dose fractionation studies over a 24-h dose range of 0.39 to 1,600 mg/kg were administered every 3, 6, 12, or 24 hours. Nonlinear regression analysis was used to determine which pharmacokinetic-pharmacodynamic (PK-PD) index (total and free 65% drug) best correlated with CFU/thigh at 24 h. Similar to other beta-lactam antibiotics, PPI-0903 produced short to modest in vivo PAEs with either S. pneumoniae or E. coli. The percent time that serum concentrations were above the MIC (%T>MIC) was the PK-PD index that best correlated with efficacy (R 2 = 84 to 88% for the three organisms, compared with 9 to 41% for peak/MIC and 30 to 82% for the area under the concentration-time curve/MIC). In subsequent studies we used the neutropenic murine thigh infection model to determine if the magnitude of the free-drug %T>MIC needed for efficacy of PPI-0903 varied among pathogens (including resistant strains). Mice infected with one of five isolates of S. pneumoniae, four isolates of S. aureus, or four gram-negative bacilli were treated for 24 h with 0.10 to 400 mg/kg of PPI-0903 every 6 h. A sigmoid dose-response model was used to estimate the doses (mg/kg/24 h) required to achieve a net bacteriostatic affect over 24 h and to produce a reduction in the burden of organisms from the start of therapy by 1 and 2 log10 CFU/thigh. MICs ranged from 0.008 to 1 μg/ml. Mean free-drug %T>MICs ± the standard deviation associated with the static effect endpoint for S. pneumoniae, S. aureus, and gram-negative isolates were 39 ± 9, 26 ± 8, and 32 ± 6, respectively. Methicillin and penicillin resistance did not alter the magnitude of free-drug %T>MIC required for efficacy. The free-drug %T>MIC necessary for efficacy was slightly reduced in animals with normal neutrophil counts. Treatment effect was similar in both the thigh and lung infection models. The pharmacodynamic characteristics of PPI-0903 are similar to those of other compounds within the cephalosporin class.


Sign in / Sign up

Export Citation Format

Share Document