scholarly journals Antiviral Activity of Favipiravir (T-705) against a Broad Range of ParamyxovirusesIn Vitroand against Human Metapneumovirus in Hamsters

2016 ◽  
Vol 60 (8) ◽  
pp. 4620-4629 ◽  
Author(s):  
D. Jochmans ◽  
S. van Nieuwkoop ◽  
S. L. Smits ◽  
J. Neyts ◽  
R. A. M. Fouchier ◽  
...  

ABSTRACTThe clinical impact of infections with respiratory viruses belonging to the familyParamyxoviridaeargues for the development of antiviral therapies with broad-spectrum activity. Favipiravir (T-705) has demonstrated potent antiviral activity against multiple RNA virus families and is presently in clinical evaluation for the treatment of influenza. Here we demonstratein vitroactivity of T-705 against the paramyxoviruses human metapneumovirus (HMPV), respiratory syncytial virus, human parainfluenza virus, measles virus, Newcastle disease virus, and avian metapneumovirus. In addition, we demonstrate activity against HMPV in hamsters. T-705 treatment inhibited replication of all paramyxoviruses testedin vitro, with 90% effective concentration (EC90) values of 8 to 40 μM. Treatment of HMPV-challenged hamsters with T-705 at 200 mg/kg of body weight/day resulted in 100% protection from infection of the lungs. In all treated and challenged animals, viral RNA remained detectable in the respiratory tract. The observation that T-705 treatment had a significant effect on infectious viral titers, with a limited effect on viral genome titers, is in agreement with its proposed mode of action of viral mutagenesis. However, next-generation sequencing of viral genomes isolated from treated and challenged hamsters did not reveal (hyper)mutation. Polymerase activity assays revealed a specific effect of T-705 on the activity of the HMPV polymerase. With the reported antiviral activity of T-705 against a broad range of RNA virus families, this small molecule is a promising broad-range antiviral drug candidate for limiting the viral burden of paramyxoviruses and for evaluation for treatment of infections with (re)emerging viruses, such as the henipaviruses.

2000 ◽  
Vol 44 (5) ◽  
pp. 1146-1152 ◽  
Author(s):  
Philip R. Wyde ◽  
Donna K. Moore-Poveda ◽  
Erik De Clercq ◽  
Johan Neyts ◽  
Akira Matsuda ◽  
...  

ABSTRACT No practical animal models for the testing of chemotherapeutic or biologic agents identified in cell culture assays as being active against measles virus (MV) are currently available. Cotton rats may serve this purpose. To evaluate this possibility, 5-ethynyl-1-β-d-ribofuranosylimidazole-4-carboxamide (EICAR) and poly(acrylamidomethyl propanesulfonate) (PAMPS), two compounds that have been reported to inhibit MV in vitro, and ribavirin, an established antiviral drug with MV-inhibitory activity, were evaluated for their antiviral activities against MV and respiratory syncytial virus (RSV) in tissue culture and in hispid cotton rats. A single administration of PAMPS markedly inhibited pulmonary RSV or MV replication (>3 log10 reduction in pulmonary titer compared to that for controls), but only if this compound was administered intranasally at about the time of virus inoculation. Both EICAR and ribavirin exhibited therapeutic activity against RSV and MV in cotton rats when they were administered parenterally. However, both of these compounds were less effective against MV. On the basis of the pulmonary virus titers on day 4 after virus inoculation, the minimal efficacious dose of EICAR against MV (120 mg/kg of body weight/day when delivered intraperitoneally twice daily) appeared to be three times lower against this virus than that of ribavirin delivered at a similar dose (i.e., 360 mg/kg/day). These findings correlated with those obtained in vitro. The data obtained suggest that cotton rats may indeed be useful for the initial evaluation of the activities of antiviral agents against MV.


2022 ◽  
Vol 50 (1) ◽  
Author(s):  
Mya Myat Ngwe Tun ◽  
Takaya Sakura ◽  
Yasuteru Sakurai ◽  
Yohei Kurosaki ◽  
Daniel Ken Inaoka ◽  
...  

Abstract Background Genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began to emerge in 2020 and have been spreading globally during the coronavirus disease 2019 (COVID-19) pandemic. Despite the presence of different COVID-19 vaccines, the discovery of effective antiviral therapeutics for the treatment of patients infected with SARS-CoV-2 are still urgently needed. A natural amino acid, 5-aminolevulinic acid (5-ALA), has exhibited both antiviral and anti-inflammatory activities. In a previous study, we demonstrated an in vitro antiviral effect of 5-ALA against SARS-CoV-2 infection without significant cytotoxicity. In the present study, we sought to investigate whether 5-ALA with or without sodium ferrous citrate (SFC) can inhibit in vitro both the original SARS-CoV-2 Wuhan strain and its variants, including the Alpha, Beta, Gamma and Delta strains. Methods The antiviral activity of ALA with or without SFC was determined in Vero-E6 cell. The virus inhibition was quantified by real time RT-PCR. Results Co-administration of 5-ALA and SFC inhibited the Wuhan, Alpha and Delta variants of SARS-CoV-2 with IC50 values of 235, 173 and 397 µM, respectively, and the Beta and Gamma variants with IC50 values of 1311 and 1516 µM. Conclusion Our study suggests that 5-ALA with SFC warrants accelerated clinical evaluation as an antiviral drug candidate for treating patients infected with SARS-CoV-2 variants.


2019 ◽  
Vol 20 (24) ◽  
pp. 6261
Author(s):  
Min Guo ◽  
Jiawei Ni ◽  
Jie Yu ◽  
Jing Jin ◽  
Lingman Ma ◽  
...  

The currently available drugs against influenza A virus primarily target neuraminidase (NA) or the matrix protein 2 (M2) ion channel. The emergence of drug-resistant viruses requires the development of new antiviral chemicals. Our study applied a cell-based approach to evaluate the antiviral activity of a series of newly synthesized benzoic acid derivatives, and 4-(2,2-Bis(hydroxymethyl)-5-oxopyrrolidin-l-yl)-3-(5-cyclohexyl-4H-1,2,4-triazol-3-yl)amino). benzoic acid, termed NC-5, was found to possess antiviral activity. NC-5 inhibited influenza A viruses A/FM/1/47 (H1N1), A/Beijing/32/92 (H3N2) and oseltamivir-resistant mutant A/FM/1/47-H275Y (H1N1-H275Y) in a dose-dependent manner. The 50% effective concentrations (EC50) for H1N1 and H1N1-H275Y were 33.6 μM and 32.8 μM, respectively, which showed that NC-5 had a great advantage over oseltamivir in drug-resistant virus infections. The 50% cytotoxic concentration (CC50) of NC-5 was greater than 640 μM. Orally administered NC-5 protected mice infected with H1N1 and H1N1-H275Y, conferring 80% and 60% survival at 100 mg/kg/d, reducing body weight loss, and alleviating virus-induced lung injury. NC-5 could suppress NP and M1 protein expression levels during the late stages of viral biosynthesis and inhibit NA activity, which may influence virus release. Our study proved that NC-5 has potent anti-influenza activity in vivo and in vitro, meaning that it could be regarded as a promising drug candidate to treat infection with influenza viruses, including oseltamivir-resistant viruses.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yihua Zhang ◽  
Manman Li ◽  
Liuyan Li ◽  
Gui Qian ◽  
Yu Wang ◽  
...  

AbstractVirus infection may induce excessive interferon (IFN) responses that can lead to host tissue injury or even death. β-arrestin 2 regulates multiple cellular events through the G protein-coupled receptor (GPCR) signaling pathways. Here we demonstrate that β-arrestin 2 also promotes virus-induced production of IFN-β and clearance of viruses in macrophages. β-arrestin 2 interacts with cyclic GMP-AMP synthase (cGAS) and increases the binding of dsDNA to cGAS to enhance cyclic GMP-AMP (cGAMP) production and the downstream stimulator of interferon genes (STING) and innate immune responses. Mechanistically, deacetylation of β-arrestin 2 at Lys171 facilitates the activation of the cGAS–STING signaling and the production of IFN-β. In vitro, viral infection induces the degradation of β-arrestin 2 to facilitate immune evasion, while a β-blocker, carvedilol, rescues β-arrestin 2 expression to maintain the antiviral immune response. Our results thus identify a viral immune-evasion pathway via the degradation of β-arrestin 2, and also hint that carvedilol, approved for treating heart failure, can potentially be repurposed as an antiviral drug candidate.


2002 ◽  
Vol 76 (12) ◽  
pp. 6268-6276 ◽  
Author(s):  
Jeffrey J. Bajramovic ◽  
Sylvie Syan ◽  
Michel Brahic ◽  
Juan Carlos de la Torre ◽  
Daniel Gonzalez-Dunia

ABSTRACT Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that causes neurological diseases in a variety of warm-blooded animal species. There is general consensus that BDV can also infect humans, being a possible zoonosis. Although the clinical consequences of human BDV infection are still controversial, experimental BDV infection is a well-described model for human neuropsychiatric diseases. To date, there is no effective treatment against BDV. In this paper, we demonstrate that the nucleoside analog 1-β-d-arabinofuranosylcytosine (Ara-C), a known inhibitor of DNA polymerases, inhibits BDV replication. Ara-C treatment inhibited BDV RNA and protein synthesis and prevented BDV cell-to-cell spread in vitro. Replication of other negative-strand RNA viruses such as influenza virus or measles virus was not inhibited by Ara-C, underscoring the particularity of the replication machinery of BDV. Strikingly, Ara-C treatment induced nuclear retention of viral ribonucleoparticles. These findings could not be attributed to known effects of Ara-C on the host cell, suggesting that Ara-C directly inhibits the BDV polymerase. Finally, we show that Ara-C inhibits BDV replication in vivo in the brain of infected rats, preventing persistent infection of the central nervous system as well as the development of clinical disease. These findings open the way to the development of effective antiviral therapy against BDV.


1998 ◽  
Vol 42 (4) ◽  
pp. 916-920 ◽  
Author(s):  
Q. May Wang ◽  
Robert B. Johnson ◽  
Louis N. Jungheim ◽  
Jeffrey D. Cohen ◽  
Elcira C. Villarreal

ABSTRACT The 2A and 3C proteases encoded by human rhinoviruses (HRVs) are attractive targets for antiviral drug development due to their important roles in viral replication. Homophthalimides were originally identified as inhibitors of rhinovirus 3C protease through our screening effort. Previous studies have indicated that the antiviral activity of certain homophthalimides exceeded their in vitro inhibitory activity against the viral 3C protease, suggesting that an additional mechanism might be involved. Reported here is the identification of homophthalimides as potent inhibitors for another rhinovirus protease, designated 2A. Several homophthalimides exhibit time-dependent inhibition of the 2A protease in the low-micromolar range, and enzyme-inhibitor complexes were identified by mass spectrometry. Compound LY343814, one of the most potent inhibitors against HRV14 2A protease, had an antiviral 50% inhibitory concentration of 4.2 μM in the cell-based assay. Our data reveal that homophthalimides are not only 3C but also 2A protease inhibitors in vitro, implying that the antiviral activity associated with these compounds might result from inactivation of both 2A and 3C proteases in vivo. Since the processing of the viral polyprotein is hierarchical, dual inhibition of the two enzymes may result in cooperative inhibition of viral replication. On the basis of the current understanding of their enzyme inhibitory mechanism, homophthalimides, as a group of novel nonpeptidic antirhinovirus agents, merit further structure-action relationship studies.


2020 ◽  
Author(s):  
Sean Ekins ◽  
Peter Madrid

Tilorone demonstrates in vitro antiviral activity against Chikungunya virus (CHIK) and Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV).


2020 ◽  
Author(s):  
Christin Müller ◽  
Wiebke Obermann ◽  
Nadja Karl ◽  
Hans-Guido Wendel ◽  
Gaspar Taroncher-Oldenburg ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a betacoronavirus in the subgenus Sarbecovirus causes a respiratory disease with varying symptoms referred to as coronavirus disease 2019 (COVID-19) and is responsible for a pandemic that started in early 2020. With no vaccines or effective antiviral treatments available, and infection and fatality numbers continuing to increase globally, the quest for novel therapeutic solutions remains an urgent priority. Rocaglates, a class of plant-derived cyclopenta[b]benzofurans, exhibit broad-spectrum antiviral activity against positive- and negative-sense RNA viruses. This compound class inhibits eukaryotic initiation factor 4A (eIF4A)-dependent mRNA translation initiation, resulting in strongly reduced viral RNA translation. The synthetic rocaglate CR-31-B (-) has previously been shown to inhibit the replication of human coronaviruses, such as HCoV-229E and MERS-CoV, as well as Zika-, Lassa-, Crimean Congo hemorrhagic fever virus in primary cells. Here, we assessed the antiviral activity of CR-31-B (-) against SARS-CoV-2 using both in vitro and ex vivo cell culture models. In African green monkey Vero E6 cells, CR-31-B (-) inhibited SARS-CoV-2 replication with an EC50 of ~1.8 nM. In line with this, viral protein accumulation and replication/transcription complex formation were found to be strongly reduced by this compound. In an ex vivo infection system using human airway epithelial cells, CR-31-B (-) was found to cause a massive reduction of SARS-CoV-2 titers by about 4 logs to nearly non-detectable levels. The data reveal a potent anti-SARS-CoV-2 activity by CR-31-B (-), corroborating previous results obtained for other coronaviruses and supporting the idea that rocaglates may be used in first-line antiviral intervention strategies against novel and emerging RNA virus outbreaks.


2020 ◽  
Vol 95 (1) ◽  
Author(s):  
Dongdong Cao ◽  
Yunrong Gao ◽  
Claire Roesler ◽  
Samantha Rice ◽  
Paul D'Cunha ◽  
...  

ABSTRACT Respiratory syncytial virus (RSV) is a nonsegmented negative-sense (NNS) RNA virus and shares a similar RNA synthesis strategy with other members of NNS RNA viruses, such as measles, rabies virus, and Ebola virus. RSV RNA synthesis is catalyzed by a multifunctional RNA-dependent RNA polymerase (RdRP), which is composed of a large (L) protein that catalyzes three distinct enzymatic functions and an essential coenzyme phosphoprotein (P). Here, we successfully prepared highly pure, full-length, wild-type and mutant RSV polymerase (L-P) complexes. We demonstrated that the RSV polymerase could carry out both de novo and primer-based RNA synthesis. We defined the minimal length of the RNA template for in vitro de novo RNA synthesis using the purified RSV polymerase as 8 nucleotides (nt), shorter than previously reported. We showed that the RSV polymerase catalyzed primer-dependent RNA elongation with different lengths of primers on both short (10-nt) and long (25-nt) RNA templates. We compared the sequence specificity of different viral promoters and identified positions 3, 5, and 8 of the promoter sequence as essential to the in vitro RSV polymerase activity, consistent with the results previously mapped with the in vivo minigenome assay. Overall, these findings agree well with those of previous biochemical studies and extend our understanding of the promoter sequence and the mechanism of RSV RNA synthesis. IMPORTANCE As a major human pathogen, RSV affects 3.4 million children worldwide annually. However, no effective antivirals or vaccines are available. An in-depth mechanistic understanding of the RSV RNA synthesis machinery remains a high priority among the NNS RNA viruses. There is a strong public health need for research on this virus, due to major fundamental gaps in our understanding of NNS RNA virus replication. As the key enzyme executing transcription and replication of the virus, the RSV RdRP is a logical target for novel antiviral drugs. Therefore, exploring the primer-dependent RNA elongation extends our mechanistic understanding of the RSV RNA synthesis. Further fine mapping of the promoter sequence paves the way to better understand the function and structure of the RSV polymerase.


Sign in / Sign up

Export Citation Format

Share Document