Emergence of erythromycin resistance methyltransferases in Campylobacter coli strains in France

Author(s):  
Quentin Jehanne ◽  
Lucie Bénéjat ◽  
Astrid Ducournau ◽  
Chloé Domingues-Martins ◽  
Théo Cousinou ◽  
...  

Antimicrobial resistance in Campylobacters is described worldwide. The emergence of multiresistant isolates, particularly among C. coli , is concerning. New resistance mechanisms appear frequently, and DNA-sequence-based methods such as whole genome sequencing (WGS) have become useful tools to monitor their emergence. The genomes of 51 multiresistant French Campylobacter sp. clinical strains from 2018 to 2019 were analyzed to identify associated resistance mechanisms. Analyses of erythromycin-resistant strains revealed 23S ribosomal RNA mutations among most of them and two different methyltransferases in 4 strains: Erm(B) and a novel methyltransferase, here named Erm(N). The erm(B) gene was found in multidrug-resistant genomic islands, whereas erm(N) was inserted within CRISPR arrays of the CRISPR- cas9 operon. Moreover, using PCR screening in erythromycin-resistant strains from our collection, we showed that erm(N) was already present in 3 French clinical strains 2 years before its first report in 2018 in Quebec. Bacterial transformations confirmed that insertion of erm(N) into a CRISPR- cas9 operon can confer macrolide resistance. Campylobacter species are easily able to adapt to their environment and acquire new resistance mechanisms, and the emergence of methyltransferases in Campylobacters in France is a matter of concern in the coming years.

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S655-S655
Author(s):  
Daniel Navas ◽  
Angela Charles ◽  
Amy Carr ◽  
Jose Alexander

Abstract Background The activity of imipenem/relebactam (I/R), ceftazidime/avibactam (CZA) and cefiderocol (FDC) were evaluated against clinical isolates of multidrug resistant (MDR) strains of P. aeruginosa which was resistant to ceftolozane/tazobactam (C/T). The recent increase of MDR P. aeruginosa strains isolated from clinical samples has prompted research and development of new antimicrobials that can withstand its multiple resistance mechanisms. C/T is an effective option for treatment of MDR P. aeruginosa in our facility with only 10% of resistance in MDR strains, but the emergence of resistance may occur due to the presence of a carbapenemase gene or an ampC mutation. Methods Antimicrobial susceptibility testing for C/T Etest® (bioMérieux, Inc.) were performed on all MDR strains initially screened by the VITEK2® (bioMérieux, Inc.). 10% (n=20) of all MDR isolates were resistant to C/T by the CLSI 2019 breakpoints. These resistant isolates were tested for presence of a carbapenemase gene using the GeneXpert CARBA-R (Cepheid®) PCR and against CZA Etest® (bioMérieux, Inc.) I/R gradient strips (Liofilchem®) and FDC broth microdilution (Thermo Scientific™ Sensititre™). Results A total of 20 clinical isolates of MDR P. aeruginosa resistant to C/T were tested following standardized CLSI protocols and techniques. All 20 isolates were screened for the presence of a carbapenemase gene (blaVIM, blaNDM, blaKPC, blaOXA-48, blaIMP). A blaVIM gene was detected in 6 (30%) out of 20 isolates. FDC demonstrated the greatest activity with 85% (n=17) of susceptible isolates (CLSI MIC <4µg/dL). CZA (CLSI MIC <8µg/dL) and I/R (FDA MIC <2µg/dL) showed 15% (n=3) and 10% (n=2) of susceptible isolates respectively. FDC was active against all 6 blaVIM isolates, where all 6 strains were resistant to CZA and I/R as expected. 3 isolates tested non-susceptible against FDC; additional characterization was not performed at this time. Conclusion Based on these results, FDC demonstrated the greatest in-vitro activity against C/T resistant strains of MDR P. aeruginosa. FDC also demonstrated activity against all 6 MDR P. aeruginosa carrying blaVIM gene. FDC is a strong option to consider on MDR P. aeruginosa strains based on a resistance testing algorithm and a cost/effective protocol. Disclosures All Authors: No reported disclosures


2021 ◽  
Vol 9 (5) ◽  
pp. 1077
Author(s):  
Ji-Hyun Choi ◽  
Dong Chan Moon ◽  
Abraham Fikru Mechesso ◽  
Hee Young Kang ◽  
Su-Jeong Kim ◽  
...  

We identified 1218 Campylobacter coli isolates from fecal and carcass samples of pigs (n = 643) and chickens (n = 575) between 2010 and 2018. About 99% of the isolates were resistant to at least one antimicrobial agent. The isolates exhibited high resistance rates (>75%) to ciprofloxacin, nalidixic acid, and tetracycline. Azithromycin and erythromycin resistance rates were the highest in isolates from pigs (39.7% and 39.2%, respectively) compared to those of chickens (15.8% and 16.3%, respectively). Additionally, a low-to-moderate proportion of the isolates were resistant to florfenicol, gentamicin, clindamycin, and telithromycin. Multidrug resistance (MDR) was found in 83.1% of the isolates, and profiles of MDR usually included ciprofloxacin, nalidixic acid, and tetracycline. We found point mutation (A2075G) in domain V of the 23S rRNA gene in the majority of erythromycin-resistant isolates. Multilocus sequence typing of 137 erythromycin-resistant C. coli isolates revealed 37 previously reported sequence types (STs) and 8 novel STs. M192I, A103VI, and G74A substitutions were frequently noted in the ribosomal proteins L4 or L22. Further, we identified a considerable proportion (>90%) of erythromycin-resistant isolates carrying virulence factor genes: flaA, cadF, ceuE, and VirB. The prudent use of antimicrobials and regular microbiological investigation in food animals will be vital in limiting the public health hazards of C. coli in Korea.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Bai Wei ◽  
Min Kang

We investigated the molecular mechanisms underlying macrolide resistance in 38 strains ofCampylobacterisolated from poultry. Twenty-seven strains were resistant to azithromycin and erythromycin, five showed intermediate azithromycin resistance and erythromycin susceptibility, and six showed azithromycin resistance and erythromycin susceptibility. FourCampylobacter jejuniand sixCampylobacter colistrains had azithromycin MICs which were 8–16 and 2–8-fold greater than those of erythromycin, respectively. The A2075G mutation in the 23S rRNA gene was detected in 11 resistant strains with MICs ranging from 64 to ≥ 512μg/mL. Mutations including V137A, V137S, and a six-amino acid insertion (114-VAKKAP-115) in ribosomal protein L22 were detected in theC. jejunistrains. Erythromycin ribosome methylase B-erm(B) was not detected in any strain. All strains except three showed increased susceptibility to erythromycin with twofold to 256-fold MIC change in the presence of phenylalanine arginine ß-naphthylamide (PAßN); the effects of PAßN on azithromycin MICs were limited in comparison to those on erythromycin MICs, and 13 strains showed no azithromycin MIC change in the presence of PAßN. Differences between azithromycin and erythromycin resistance and macrolide resistance phenotypes and genotypes were observed even in highly resistant strains. Further studies are required to better understand macrolide resistance inCampylobacter.


2007 ◽  
Vol 51 (9) ◽  
pp. 3190-3198 ◽  
Author(s):  
Myrielle Dupont ◽  
Chloë E. James ◽  
Jacqueline Chevalier ◽  
Jean-Marie Pagès

ABSTRACT Bacterial adaptation to external stresses and toxic compounds is a key step in the emergence of multidrug-resistant strains that are a serious threat to human health. Although some of the proteins and regulators involved in antibiotic resistance mechanisms have been described, no information is available to date concerning the early bacterial response to external stresses. Here we report that the expression of ompX, encoding an outer membrane protein, is increased during early exposure to drugs or environmental stresses. At the same time, the level of ompF porin expression is noticeably affected. Because of the role of these proteins in membrane permeability, these data suggest that OmpF and OmpX are involved in the control of the penetration of antibiotics such as β-lactams and fluoroquinolones through the enterobacterial outer membrane. Consequently, the early control of ompX and ompF induced by external stresses may represent a preliminary response to antibiotics, thus triggering the initial bacterial line of defense against antibiotherapy.


2015 ◽  
Vol 26 (3) ◽  
pp. 137-144 ◽  
Author(s):  
Nelson F Eng ◽  
Gustavo Ybazeta ◽  
Katrina Chapman ◽  
Nya L Fraleigh ◽  
Rebecca Letto ◽  
...  

BACKGROUND:Helicobacter pyloriplays a significant role in gastritis and ulcers. It is a carcinogen as defined by the WHO, and infection can result in adenocarcinomas and mucosa-associated lymphoid tissue lymphomas. In Canada, rates of antimicrobial resistance are relatively unknown, with very few studies conducted in the past 15 years.OBJECTIVE: To examine rates of resistance in Sudbury, Ontario, compare antimicrobial susceptibility methods and attempt to determine the molecular basis of antibiotic resistance.METHODS: Patients attending scheduled visits at Health Sciences North (Sudbury, Ontario) provided gastric biopsy samples on a volunteer basis. In total, 20H pyloriisolates were collected, and antimicrobial susceptibility testing (on amoxicillin, tetracycline, metronidazole, ciprofloxacin, levofloxacin and clarithromycin) was conducted using disk diffusion and E-test methods. Subsequently, genomic DNA from these isolates was sequenced to detect mutations associated with antimicrobial resistance.RESULTS: Sixty-five percent of the isolates were found to be resistant to at least one of the listed antibiotics according to E-test. Three isolates were found to be resistant to ≥3 of the above-mentioned antibiotics. Notably, 25% of the isolates were found to be resistant to both metronidazole and clarithromycin, two antibiotics that are normally prescribed as part of first-line regimens in the treatment ofH pyloriinfections in Canada and most of the world. Among the resistant strains, the sequences of 23S ribosomal RNA andgyrA, which are linked to clarithromycin and ciprofloxacin/levofloxacin resistance, respectively, revealed the presence of known point mutations associated with antimicrobial resistance.CONCLUSIONS: In general, resistance to metronidazole, ciprofloxacin/levofloxacin and clarithromycin has increased since the studies in the early 2000s. These results suggest that surveillance programs ofH pyloriantibiotic resistance may need to be revisited or improved to prevent antimicrobial therapy failure.


2021 ◽  
Author(s):  
Antón Ambroa ◽  
Lucia Blasco ◽  
María López ◽  
Olga Pacios ◽  
Inés Bleriot ◽  
...  

Abstract BackgroundIn order to optimize phage therapy, we need to understand how bacteria evolve against phage attack. One of the main problems of the phage therapy is the appearance of bacterial resistance variants. The use of genomics to track antimicrobial resistance is increasingly developed and used in clinical laboratories. For that reason, it is important to consider, in an emerging future with phage therapy, to detect and avoid phage resistant strains, that can be overcomed by the analysis of metadata provided by WGS. Here, we identified genes associated with phage resistance in 18 Acinetobacter baumannii clinical strain belonging to the ST-2 clonal complex during a decade (Ab2000 vs 2010): 9 from 2000 and 9 from 2010.ResultsThe presence of genes putatively associated to phage resistance were detected. Genes detected were associated with an abortive infection system, restriction-modification system, genes predicted to be associated with defence systems but with unknown function and CRISPR-Cas system. Between 118 and 171 genes were found in the 18 clinical strains. On average, 26% of these genes were detected inside genomic islands (GIs) in the 2000 strains and 32% in 2010 strains. Furthermore, 38 potential CRISPR arrays in 17 of 18 of the strains were found, as well as 705 proteins associated with CRISPR-Cas systems.ConclusionsA moderately higher presence of these genes in the strains of the 2010 in comparison to those of the 2000 were found, especially those related to the R-M system and CRISPR-Cas system. The presence of these genes in GIs in a higher rate in the strains of the 2010 compared to those of the 2000 was also detected. WGS and bioinformatics could be powerful tools to avoid drawbacks when a personalized therapy is applied. In this study, it allows us to take care of the phage resistance in A. baumannii clinical strains to prevent a failure in a possible phage therapy.


2020 ◽  
Author(s):  
John Osei Sekyere ◽  
Melese Abate Reta

AbstractBackground.The global epidemiology and resistomes dynamics of multidrug-resistant Citrobacter spp., Enterobacter hormaechei, Klebsiella variicola, morganella morganii, Proteus mirabilis and Providencia spp. have not been described, despite their importance as emerging opportunistic clinical pathogens.Methods.The genomes of the above-mentioned organisms were curated from PATRIC and NCBI and used for evolutionary epidemiology, phylogeography and resistome analyses. The phylogeny trees were drawn using RAXmL and edited with Figtree. The resistomes were curated from GenBank and the phylogeography was manually mapped.Results and conclusion.Mcr-9 and other mcr variants were highly prevalent in E. hormaechei subsp. and substantial in C. freundii whilst KPC, OXA-48, NDM, IMP, VIM, TEM, OXA and SHV were abundant in global E. hormaechei subsp., Citrobacter freundii, P. mirabilis, P. stuartii and P. rettgeri clones/clades. Species-specific ampCs were highly conserved in respective species whilst fluoroquinolones, aminoglycosides, macrolides, fosfomycin, chloramphenicol, tetracycline, sulphamethoxazole and trimethoprim resistance mechanisms were abundantly enriched in almost all clades of most of the species, making them extensively and pandrug resistant; K. variicola, C. amalonaticus and C, koseri had relatively few resistance genes. Vertical and horizontal resistome transmissions as well as local and international dissemination of strains evolving from common ancestors were observed, suggesting the anthroponotic, zoonotic, and food-/water-borne infectiousness of these pathogens. There is a global risk of pandrug resistant strains escalating local and international outbreaks of antibiotic-insensitive infections, initiating the dawn of a post-antibiotic era.


2021 ◽  
Vol 12 ◽  
Author(s):  
Katy Jeannot ◽  
Katheryn Hagart ◽  
Laurent Dortet ◽  
Markus Kostrzewa ◽  
Alain Filloux ◽  
...  

Colistin is frequently a last resort treatment for Pseudomonas aeruginosa infections caused by multidrug-resistant (MDR) and extensively drug resistant (XDR) strains, and detection of colistin resistance is essential for the management of infected patients. Therefore, we evaluated the recently developed MALDIxin test for the detection of colistin resistance in P. aeruginosa clinical strains using the routine matrix-assisted laser desorption ionization (MALDI) Biotyper Sirius system. The test is based on the detection by mass spectrometry of modified lipid A by the addition of 4-amino-l-arabinose (l-ara4N) molecules on one or two phosphate groups, in strains resistant to colistin. Overproduction of l-Ara4N molecules is mainly due to the constitutive activation of the histidine kinase (PmrB) or the response regulator (PmrA) following an amino-acid substitution in clinical strains. The performance of the test was determined on a panel of 14 colistin-susceptible and 14 colistin-resistant P. aeruginosa clinical strains, the reference strain PAO1 and positive control mutants PmrB (V28G), PmrB (D172), PhoQ (D240–247), and ParR (M59I). In comparison with the broth microdilution (BMD) method, all the susceptible strains (n=14) and 8/14 colistin-resistant strains were detected in less than 1h, directly on whole bacteria. The remaining resistant strains (n=6) were all detected after a short pre-exposure (4h) to colistin before sample preparation. Validation of the method on a larger panel of strains will be the next step before its use in diagnostics laboratories. Our data showed that the MALDIxin test offers rapid and efficient detection of colistin resistant P. aeruginosa and is thus a valuable diagnostics tool to control the spread of these emerging resistant strains.


1999 ◽  
Vol 37 (4) ◽  
pp. 1197-1199 ◽  
Author(s):  
G. Pozzi ◽  
M. Meloni ◽  
E. Iona ◽  
G. Orrù ◽  
O. F. Thoresen ◽  
...  

Mutations of rpoB associated with rifampin resistance were studied in 37 multidrug-resistant (MDR) clinical strains ofMycobacterium tuberculosis isolated in Italy. At least one mutated codon was found in each MDR strain. It was always a single-base substitution leading to an amino acid change. Nine differentrpoB alleles, three of which had not been reported before, were found. The relative frequencies of specific mutations in this sample were different from those previously reported from different geographical areas, since 22 strains (59.5%) carried the mutated codon TTG in position 531 (Ser→Leu) and 11 (29.7%) had GAC in position 526 (His→Asp).


Sign in / Sign up

Export Citation Format

Share Document