scholarly journals Using a Novel Lysin To Help Control Clostridium difficile Infections

2015 ◽  
Vol 59 (12) ◽  
pp. 7447-7457 ◽  
Author(s):  
Qiong Wang ◽  
Chad W. Euler ◽  
Aurelia Delaune ◽  
Vincent A. Fischetti

ABSTRACTAs a consequence of excessive antibiotic therapies in hospitalized patients,Clostridium difficile, a Gram-positive anaerobic spore-forming intestinal pathogen, is the leading cause of hospital-acquired diarrhea and colitis. Drug treatments for these diseases are often complicated by antibiotic-resistant strains and a high frequency of treatment failures and relapse; therefore, novel nonantibiotic approaches may prove to be more effective. In this study, we recombinantly expressed a prophage lysin identified from aC. difficilestrain, CD630, which we named PlyCD. PlyCD was found to have lytic activity against specificC. difficilestrains. However, the recombinantly expressed catalytic domain of this protein, PlyCD1–174, displayed significantly greater lytic activity (>4-log kill) and a broader lytic spectrum againstC. difficilestrains while still retaining a high degree of specificity towardC. difficileversus commensal clostridia and other bacterial species. Our data also indicated that noneffective doses of vancomycin and PlyCD1–174when combinedin vitrocould be significantly more bactericidal againstC. difficile. In anex vivotreatment model of mouse colon infection, we found that PlyCD1–174functioned in the presence of intestinal contents, significantly decreasing colonizingC. difficilecompared to controls. Together, these data suggest that PlyCD1–174has potential as a novel therapeutic for clinical application againstC. difficileinfection, either alone or in combination with other preexisting treatments to improve their efficacy.

2013 ◽  
Vol 57 (6) ◽  
pp. 2743-2750 ◽  
Author(s):  
Daniel B. Gilmer ◽  
Jonathan E. Schmitz ◽  
Chad W. Euler ◽  
Vincent A. Fischetti

ABSTRACTMethicillin-resistantStaphylococcus aureus(MRSA) andStreptococcus pyogenes(group A streptococcus [GrAS]) cause serious and sometimes fatal human diseases. They are among the many Gram-positive pathogens for which resistance to leading antibiotics has emerged. As a result, alternative therapies need to be developed to combat these pathogens. We have identified a novel bacteriophage lysin (PlySs2), derived from aStreptococcus suisphage, with broad lytic activity against MRSA, vancomycin-intermediateS. aureus(VISA),Streptococcus suis,Listeria,Staphylococcus simulans,Staphylococcus epidermidis,Streptococcus equi,Streptococcus agalactiae(group B streptococcus [GBS]),S. pyogenes,Streptococcus sanguinis, group G streptococci (GGS), group E streptococci (GES), andStreptococcus pneumoniae. PlySs2 has an N-terminal cysteine-histidine aminopeptidase (CHAP) catalytic domain and a C-terminal SH3b binding domain. It is stable at 50°C for 30 min, 37°C for >24 h, 4°C for 15 days, and −80°C for >7 months; it maintained full activity after 10 freeze-thaw cycles. PlySs2 at 128 μg/mlin vitroreduced MRSA andS. pyogenesgrowth by 5 logs and 3 logs within 1 h, respectively, and exhibited a MIC of 16 μg/ml for MRSA. A single, 2-mg dose of PlySs2 protected 92% (22/24) of the mice in a bacteremia model of mixed MRSA andS. pyogenesinfection. Serially increasing exposure of MRSA andS. pyogenesto PlySs2 or mupirocin resulted in no observed resistance to PlySs2 and resistance to mupirocin. To date, no other lysin has shown such notable broad lytic activity, stability, and efficacy against multiple, leading, human bacterial pathogens; as such, PlySs2 has all the characteristics to be an effective therapeutic.


2012 ◽  
Vol 78 (21) ◽  
pp. 7671-7679 ◽  
Author(s):  
Lovleen Tina Joshi ◽  
Daniel S. Phillips ◽  
Catrin F. Williams ◽  
Abdullah Alyousef ◽  
Les Baillie

ABSTRACTClostridium difficileis the commonest cause of hospital-acquired infection in the United Kingdom. We characterized the abilities of 21 clinical isolates to form spores; to adhere to inorganic and organic surfaces, including stainless steel and human adenocarcinoma cells; and to germinate. The composition of culture media had a significant effect on spore formation, as significantly more spores were produced in brain heart infusion broth (Student'sttest;P= 0.018). The spore surface relative hydrophobicity (RH) varied markedly (14 to 77%) and was correlated with the ability to adhere to stainless steel. We observed no correlation between the ribotype and the ability to adhere to steel. When the binding of hydrophobic (DS1813; ribotype 027; RH, 77%) and hydrophilic (DS1748; ribotype 002; RH, 14%) spores to human gut epithelial cells at different stages of cell development was examined, DS1813 spores adhered more strongly, suggesting the presence of surface properties that aid attachment to human cells. Electron microscopy studies revealed the presence of an exosporium surrounding DS1813 spores that was absent from spores of DS1748. Finally, the ability of spores to germinate was found to be strain and medium dependent. While the significance of these findings to the disease process has yet to be determined, this study has highlighted the importance of analyzing multiple isolates when attempting to characterize the behavior of a bacterial species.


2015 ◽  
Vol 197 (18) ◽  
pp. 2930-2940 ◽  
Author(s):  
Theresa D. Ho ◽  
Craig D. Ellermeier

ABSTRACTClostridium difficileis an anaerobic, Gram-positive, spore-forming opportunistic pathogen and is the most common cause of hospital-acquired infectious diarrhea. Although iron acquisition in the host is a key to survival of bacterial pathogens, high levels of intracellular iron can increase oxidative damage. Therefore, expression of iron acquisition mechanisms is tightly controlled by transcriptional regulators. We identified aC. difficilehomologue of the master bacterial iron regulator Fur. Using targetron mutagenesis, we generated afurinsertion mutant ofC. difficile. To identify the genes regulated by Fur inC. difficile, we used microarray analysis to compare transcriptional differences between thefurmutant and the wild type when grown in high-iron medium. Thefurmutant had increased expression of greater than 70 transcriptional units. Using quantitative reverse transcriptase PCR (qRT-PCR), we analyzed several of the Fur-regulated genes identified by the microarray and verified that they are both iron and Fur regulated inC. difficile. Among those Fur- and iron-repressed genes wereC. difficilegenes encoding 7 putative cation transport systems of different classes. We found that Fur was able to bind the DNA upstream of three Fur-repressed genes in electrophoretic mobility shift assays. We also demonstrate that expression of Fur-regulated putative iron acquisition systems was increased duringC. difficileinfection using the hamster model. Our data suggest thatC. difficileexpresses multiple iron transport mechanisms in response iron depletionin vitroandin vivo.IMPORTANCEClostridium difficileis the most common cause of hospital-acquired infectious diarrhea and has been recently classified as an “urgent” antibiotic resistance threat by the CDC. To survive and cause disease, most bacterial pathogens must acquire the essential enzymatic cofactor iron. While import of adequate iron is essential for most bacterial growth, excess intracellular iron can lead to extensive oxidative damage. Thus, bacteria must regulate iron import to maintain iron homeostasis. We demonstrate here thatC. difficileregulates expression of several putative iron acquisition systems using the transcriptional regulator Fur. These import mechanisms are induced under iron-limiting conditionsin vitroand duringC. difficileinfection of the host. This suggests that during aC. difficileinfection, iron availability is limitedin vivo.


2014 ◽  
Vol 59 (2) ◽  
pp. 1052-1060 ◽  
Author(s):  
Lorraine D. Hernandez ◽  
Fred Racine ◽  
Li Xiao ◽  
Edward DiNunzio ◽  
Nichelle Hairston ◽  
...  

ABSTRACTClostridium difficileinfections (CDIs) are the leading cause of hospital-acquired infectious diarrhea and primarily involve two exotoxins, TcdA and TcdB. Actoxumab and bezlotoxumab are human monoclonal antibodies that neutralize the cytotoxic/cytopathic effects of TcdA and TcdB, respectively. In a phase II clinical study, the actoxumab-bezlotoxumab combination reduced the rate of CDI recurrence in patients who were also treated with standard-of-care antibiotics. However, it is not known whether the antibody combination will be effective against a broad range ofC. difficilestrains. As a first step toward addressing this, we tested the ability of actoxumab and bezlotoxumab to neutralize the activities of toxins from a number of clinically relevant and geographically diverse strains ofC. difficile. Neutralization potencies, as measured in a cell growth/survival assay with purified toxins from variousC. difficilestrains, correlated well with antibody/toxin binding affinities. Actoxumab and bezlotoxumab neutralized toxins from culture supernatants of all clinical isolates tested, including multiple isolates of the BI/NAP1/027 and BK/NAP7/078 strains, at antibody concentrations well below plasma levels observed in humans. We compared the bezlotoxumab epitopes in the TcdB receptor binding domain across known TcdB sequences and found that key substitutions within the bezlotoxumab epitopes correlated with the relative differences in potencies of bezlotoxumab against TcdB of some strains, including ribotypes 027 and 078. Combined within vitroneutralization data, epitope modeling will enhance our ability to predict the coverage of new and emerging strains by actoxumab-bezlotoxumab in the clinic.


2012 ◽  
Vol 56 (7) ◽  
pp. 3943-3949 ◽  
Author(s):  
Chun-Hsing Liao ◽  
Wen-Chien Ko ◽  
Jang-Jih Lu ◽  
Po-Ren Hsueh

ABSTRACTA total of 403 nonduplicate isolates ofClostridium difficilewere collected at three major teaching hospitals representing northern, central, and southern Taiwan from January 2005 to December 2010. Of these 403 isolates, 170 (42.2%) were presumed to be nontoxigenic due to the absence of genes for toxins A or B or binary toxin. The remaining 233 (57.8%) isolates carried toxin A and B genes, and 39 (16.7%) of these also had binary toxin genes. The MIC90of all isolates for fidaxomicin and rifaximin was 0.5 μg/ml (range, ≤0.015 to 0.5 μg/ml) and >128 μg/ml (range, ≤0.015 to >128 μg/ml), respectively. All isolates were susceptible to metronidazole (MIC90of 0.5 μg/ml; range, ≤0.03 to 4 μg/ml). Two isolates had reduced susceptibility to vancomycin (MICs, 4 μg/ml). Only 13.6% of isolates were susceptible to clindamycin (MIC of ≤2 μg/ml). Nonsusceptibility to moxifloxacin (n= 81, 20.1%) was accompanied by single or multiple mutations ingyrAandgyrBgenes in all but eight moxifloxacin-nonsusceptible isolates. Two previously unreportedgyrBmutations might independently confer resistance (MIC, 16 μg/ml), Ser416 to Ala and Glu466 to Lys. Moxifloxacin-resistant isolates were cross-resistant to ciprofloxacin and levofloxacin, but some moxifloxacin-nonsusceptible isolates remained susceptible to gemifloxacin or nemonoxacin at 0.5 μg/ml. This study found the diversity of toxigenic and nontoxigenic strains ofC. difficilein the health care setting in Taiwan. All isolates tested were susceptible to metronidazole and vancomycin. Fidaxomicin exhibited potentin vitroactivity against all isolates tested, while the more than 10% of Taiwanese isolates with rifaximin MICs of ≥128 μg/ml raises concerns.


2014 ◽  
Vol 81 (1) ◽  
pp. 130-138 ◽  
Author(s):  
James Kirby ◽  
Minobu Nishimoto ◽  
Ruthie W. N. Chow ◽  
Edward E. K. Baidoo ◽  
George Wang ◽  
...  

ABSTRACTTerpene synthesis in the majority of bacterial species, together with plant plastids, takes place via the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway. The first step of this pathway involves the condensation of pyruvate and glyceraldehyde 3-phosphate by DXP synthase (Dxs), with one-sixth of the carbon lost as CO2. A hypothetical novel route from a pentose phosphate to DXP (nDXP) could enable a more direct pathway from C5sugars to terpenes and also circumvent regulatory mechanisms that control Dxs, but there is no enzyme known that can convert a sugar into its 1-deoxy equivalent. Employing a selection for complementation of adxsdeletion inEscherichia coligrown on xylose as the sole carbon source, we uncovered two candidate nDXP genes. Complementation was achieved either via overexpression of the wild-typeE. coliyajOgene, annotated as a putative xylose reductase, or via various mutations in the nativeribBgene.In vitroanalysis performed with purified YajO and mutant RibB proteins revealed that DXP was synthesized in both cases from ribulose 5-phosphate (Ru5P). We demonstrate the utility of these genes for microbial terpene biosynthesis by engineering the DXP pathway inE. colifor production of the sesquiterpene bisabolene, a candidate biodiesel. To further improve flux into the pathway from Ru5P, nDXP enzymes were expressed as fusions to DXP reductase (Dxr), the second enzyme in the DXP pathway. Expression of a Dxr-RibB(G108S) fusion improved bisabolene titers more than 4-fold and alleviated accumulation of intracellular DXP.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fatemeh Ostadhossein ◽  
Parikshit Moitra ◽  
Esra Altun ◽  
Debapriya Dutta ◽  
Dinabandhu Sar ◽  
...  

AbstractDental plaques are biofilms that cause dental caries by demineralization with acidogenic bacteria. These bacteria reside inside a protective sheath which makes any curative treatment challenging. We propose an antibiotic-free strategy to disrupt the biofilm by engineered clustered carbon dot nanoparticles that function in the acidic environment of the biofilms. In vitro and ex vivo studies on the mature biofilms of Streptococcus mutans revealed >90% biofilm inhibition associated with the contact-mediated interaction of nanoparticles with the bacterial membrane, excessive reactive oxygen species generation, and DNA fragmentation. An in vivo examination showed that these nanoparticles could effectively suppress the growth of S. mutans. Importantly, 16S rRNA analysis of the dental microbiota showed that the diversity and richness of bacterial species did not substantially change with nanoparticle treatment. Overall, this study presents a safe and effective approach to decrease the dental biofilm formation without disrupting the ecological balance of the oral cavity.


2016 ◽  
Vol 60 (11) ◽  
pp. 6859-6866 ◽  
Author(s):  
Zi Wei Chang ◽  
Benoit Malleret ◽  
Bruce Russell ◽  
Laurent Rénia ◽  
Carla Claser

ABSTRACTEx vivoassay systems provide a powerful approach to studying human malaria parasite biology and to testing antimalarials. For rodent malaria parasites, short-termin vitroculture andex vivoantimalarial susceptibility assays are relatively cumbersome, relying onin vivopassage for synchronization, since ring-stage parasites are an essential starting material. Here, we describe a new approach based on the enrichment of ring-stagePlasmodium berghei,P. yoelii, andP. vinckei vinckeiusing a single-step Percoll gradient. Importantly, we demonstrate that the enriched ring-stage parasites develop synchronously regardless of the parasite strain or species used. Using a flow cytometry assay with Hoechst and ethidium or MitoTracker dye, we show that parasite development is easily and rapidly monitored. Finally, we demonstrate that this approach can be used to screen antimalarial drugs.


2012 ◽  
Vol 56 (9) ◽  
pp. 4786-4792 ◽  
Author(s):  
Michelle M. Butler ◽  
Dean L. Shinabarger ◽  
Diane M. Citron ◽  
Ciarán P. Kelly ◽  
Sofya Dvoskin ◽  
...  

ABSTRACTClostridium difficileinfection (CDI) causes moderate to severe disease, resulting in diarrhea and pseudomembranous colitis. CDI is difficult to treat due to production of inflammation-inducing toxins, resistance development, and high probability of recurrence. Only two antibiotics are approved for the treatment of CDI, and the pipeline for therapeutic agents contains few new drugs. MBX-500 is a hybrid antibacterial, composed of an anilinouracil DNA polymerase inhibitor linked to a fluoroquinolone DNA gyrase/topoisomerase inhibitor, with potential as a new therapeutic for CDI treatment. Since MBX-500 inhibits three bacterial targets, it has been previously shown to be minimally susceptible to resistance development. In the present study, thein vitroandin vivoefficacies of MBX-500 were explored against the Gram-positive anaerobe,C. difficile. MBX-500 displayed potency across nearly 50 isolates, including those of the fluoroquinolone-resistant, toxin-overproducing NAP1/027 ribotype, performing as well as comparator antibiotics vancomycin and metronidazole. Furthermore, MBX-500 was a narrow-spectrum agent, displaying poor activity against many other gut anaerobes. MBX-500 was active in acute and recurrent infections in a toxigenic hamster model of CDI, exhibiting full protection against acute infections and prevention of recurrence in 70% of the animals. Hamsters treated with MBX-500 displayed significantly greater weight gain than did those treated with vancomycin. Finally, MBX-500 was efficacious in a murine model of CDI, again demonstrating a fully protective effect and permitting near-normal weight gain in the treated animals. These selective anti-CDI features support the further development of MBX 500 for the treatment of CDI.


1990 ◽  
Vol 72 (5) ◽  
pp. 775-781 ◽  
Author(s):  
John W. Peterson ◽  
Lawrence Roussos ◽  
Byung-Duk Kwun ◽  
John D. Hackett ◽  
Christopher J. Owen ◽  
...  

✓ The short-term (≤ 72-hour) reaction to subarachnoid injections of various blood components was determined in a canine model of cerebral vasospasm. Platelet-rich plasma (PRP) formed durable clots in the basal cistern surrounding the basilar artery and provoked no vascular reaction in 72 hours or more. Freshly isolated autologous erythrocytes resuspended in PRP likewise provoked no vasoconstriction in 72 hours, although a second injection of fresh erythrocytes in PRP induced significant reaction, as in the conventional “double subarachnoid hemorrhage (SAH)” canine model. Hemolysate of fresh erythrocytes led to a severe immediate vascular reaction after introduction into the basal cistern using PRP as the carrier/clotting medium, as did the injection of intact erythrocytes incubated ex vivo for 72 hours. Resolution of the initial reaction was rapid for hemolysate, but slow and (depending on hematocrit) incomplete for intact “aged” erythrocytes. In vitro measurements of erythrocyte lysis in these media and histological examination indicate that the production of erythrocyte lysate was responsible for the vascular reaction observed, suggesting that the rate of lysis of erythrocytes in the subarachnoid clot is a major factor in the genesis of vasospasm after SAH.


Sign in / Sign up

Export Citation Format

Share Document