Nemonoxacin enhances antibacterial activity and anti-resistant mutation ability of vancomycin against methicillin-resistant Staphylococcus aureus in an in vitro dynamic pharmacokinetic/pharmacodynamic model

Author(s):  
Junchen Huang ◽  
Siwei Guo ◽  
Xin Li ◽  
Fang Yuan ◽  
You Li ◽  
...  

Reduced susceptibility and emergence of resistance to vancomycin in methicillin-resistant Staphylococcus aureus (MRSA) have led to the development of various vancomycin based combinations. Nemonoxacin is a novel nonfluorinated quinolone with antibacterial activity against MRSA. The present study aimed to investigate the effects of nemonoxacin on antibacterial activity and the anti-resistant mutation ability of vancomycin for MRSA and explore whether quinolone resistance genes are associated with a reduction in the vancomycin minimal inhibitory concentration (MIC) and mutant prevention concentration (MPC) when combined with nemonoxacin. Four isolates, all with a vancomycin MIC of 2 μg/mL, were used in a modified in vitro dynamic pharmacokinetic/pharmacodynamic model to investigate the effects of nemonoxacin on antibacterial activity (M04, M23 and M24) and anti-resistant mutation ability (M04, M23 and M25, all with MPC ≥19.2 μg/mL) of vancomycin. The mutation sites of gyrA , gyrB , parC , and parE of 55 clinical MRSA isolates were sequenced. We observed that in M04 and M23, the combination of vancomycin (1g q12h) and nemonoxacin (0.5g qd) showed a synergistic bactericidal activity and resistance enrichment suppression. All clinical isolates resistant to nemonoxacin harbored gyrA (S84→L) mutation; gyrA (S84→L) and parC (E84→K) mutations were the two independent risk factors for the unchanged vancomycin MPC in combination. Nemonoxacin enhances the bactericidal activity and suppresses resistance enrichment ability of vancomycin against MRSA with a MIC of 2 μg/mL. Our in vitro data support the combination of nemonoxacin and vancomycin for the treatment of MRSA infection with a high MIC.

2013 ◽  
Vol 58 (2) ◽  
pp. 672-677 ◽  
Author(s):  
Amira A. Bhalodi ◽  
Mao Hagihara ◽  
David P. Nicolau ◽  
Joseph L. Kuti

ABSTRACTThe effects of prior vancomycin exposure on ceftaroline and daptomycin therapy against methicillin-resistantStaphylococcus aureus(MRSA) have not been widely studied. Humanized free-drug exposures of vancomycin at 1 g every 12 h (q12h), ceftaroline at 600 mg q12h, and daptomycin at 10 mg/kg of body weight q24h were simulated in a 96-hin vitropharmacodynamic model against three MRSA isolates, including one heteroresistant vancomycin-intermediateS. aureus(hVISA) isolate and one VISA isolate. A total of five regimens were tested: vancomycin, ceftaroline, and daptomycin alone for the entire 96 h, and then sequential therapy with vancomycin for 48 h followed by ceftaroline or daptomycin for 48 h. Microbiological responses were measured by the changes in log10CFU during 96 h from baseline. Control isolates grew to 9.16 ± 0.32, 9.13 ± 0.14, and 8.69 ± 0.28 log10CFU for MRSA, hVISA, and VISA, respectively. Vancomycin initially achieved ≥3 log10CFU reductions against the MRSA and hVISA isolates, followed by regrowth beginning at 48 h; minimal activity was observed against VISA. The change in 96-h log10CFU was largest for sequential therapy with vancomycin followed by ceftaroline (−5.22 ± 1.2,P= 0.010 versus ceftaroline) and for sequential therapy with vancomycin followed by ceftaroline (−3.60 ± 0.6,P= 0.037 versus daptomycin), compared with daptomycin (−2.24 ± 1.0), vancomycin (−1.40 ± 1.8), and sequential therapy with vancomycin followed by daptomycin (−1.32 ± 1.0,P> 0.5 for the last three regimens). Prior exposure of vancomycin at 1 g q12h reduced the initial microbiological response of daptomycin, particularly for hVISA and VISA isolates, but did not affect the response of ceftaroline. In the scenario of poor vancomycin response for high-inoculum MRSA infection, a ceftaroline-containing regimen may be preferred.


2012 ◽  
Vol 56 (11) ◽  
pp. 5709-5714 ◽  
Author(s):  
Molly E. Steed ◽  
Brian J. Werth ◽  
Cortney E. Ireland ◽  
Michael J. Rybak

ABSTRACTDaptomycin-nonsusceptible (DNS)Staphylococcus aureusis found in difficult-to-treat infections, and the optimal therapy is unknown. We investigated the activity of high-dose (HD) daptomycin plus trimethoprim-sulfamethoxazole de-escalated to HD daptomycin or trimethoprim-sulfamethoxazole against 4 clinical DNS methicillin-resistantS. aureus(MRSA) isolates in anin vitropharmacokinetic/pharmacodynamic model of simulated endocardial vegetations (109CFU/g). Simulated regimens included HD daptomycin at 10 mg/kg/day for 14 days, trimethoprim-sulfamethoxazole at 160/800 mg every 12 h for 14 days, HD daptomycin plus trimethoprim-sulfamethoxazole for 14 days, and the combination for 7 days de-escalated to HD daptomycin for 7 days and de-escalated to trimethoprim-sulfamethoxazole for 7 days. Differences in CFU/g (at 168 and 336 h) were evaluated by analysis of variance (ANOVA) with a Tukey'spost hoctest. Daptomycin MICs were 4 μg/ml (SA H9749-1, vancomycin-intermediateStaphylococcus aureus; R6212, heteroresistant vancomycin-intermediateStaphylococcus aureus) and 2 μg/ml (R5599 and R5563). Trimethoprim-sulfamethoxazole MICs were ≤0.06/1.19 μg/ml. HD daptomycin plus trimethoprim-sulfamethoxazole displayed rapid bactericidal activity against SA H9749-1 (at 7 h) and R6212 (at 6 h) and bactericidal activity against R5599 (at 72 h) and R5563 (at 36 h). A ≥8 log10CFU/g decrease was observed with HD daptomycin plus trimethoprim-sulfamethoxazole against all strains (at 48 to 144 h), which was maintained with de-escalation to HD daptomycin or trimethoprim-sulfamethoxazole at 336 h. The combination for 14 days and the combination for 7 days de-escalated to HD daptomycin or trimethoprim-sulfamethoxazole was significantly better than daptomycin monotherapy (P< 0.05) and trimethoprim-sulfamethoxazole monotherapy (P< 0.05) at 168 and 336 h. Combination therapy followed by de-escalation offers a novel bactericidal therapeutic alternative for high-inoculum, serious DNS MRSA infections.


2006 ◽  
Vol 50 (4) ◽  
pp. 1298-1303 ◽  
Author(s):  
Kerry L. LaPlante ◽  
Michael J. Rybak ◽  
Kimberly D. Leuthner ◽  
Judy N. Chin

ABSTRACT We inoculated an in vitro pharmacodynamic model simultaneously with clinical isolates of methicillin-resistant Staphylococcus aureus and an enterocin-producing enterococcus (vancomycin-resistant Enterococcus faecalis, ampicillin susceptible) at 7 log10 CFU/ml to examine enterocin effects and antimicrobial activity on staphylococci. The investigated antimicrobial regimens were 100 mg arbekacin every 12 h (q12h), 6 mg daptomycin per kg of body weight/day, 600 mg linezolid q12h, and 100 mg tigecycline q24h alone and in combination (daptomycin, linezolid, and tigecycline) with arbekacin. Simulations were performed in triplicate; bacterial quantification occurred over 48 h, and development of resistance was evaluated throughout. When we evaluated the impact of antimicrobial activity against S. aureus alone, daptomycin demonstrated bactericidal activity (≥3 log10 CFU/ml kill), whereas arbekacin, linezolid, and tigecycline displayed bacteriostatic activities (<3 log10 CFU/ml kill). In the mixed-pathogen model, early and distinctive stunting of S. aureus growth was noted (1.5 log CFU/ml difference) in the presence of enterocin-producing E. faecalis compared to growth controls run individually (P = 0.02). Most noteworthy was that in the presence of enterocin-producing E. faecalis, bactericidal activity was observed with arbekacin and tigecycline and with the addition of arbekacin to linezolid. Antagonism was noted for the combination of tigecycline and arbekacin against S. aureus in the presence of enterocin-producing E. faecalis. Our research demonstrates that the inhibitory effect of E. faecalis contributed significantly to its overall antimicrobial impact on S. aureus. This contribution was enhanced or improved compared to the activity of each antimicrobial alone. Further research is warranted to determine the impact of polymicrobial infections on antimicrobial activity.


2011 ◽  
Vol 55 (7) ◽  
pp. 3522-3526 ◽  
Author(s):  
Molly Steed ◽  
Celine Vidaillac ◽  
Michael J. Rybak

ABSTRACTThe objective of this study was to investigate the potential role of ceftaroline, a new broad-spectrum cephalosporin, as a therapeutic option for the treatment of daptomycin-nonsusceptible (DNS) methicillin-resistantStaphylococcus aureus(MRSA) infections. Four clinical DNS MRSA strains, R5717, R5563, R5996 (heteroresistant vancomycin-intermediateS. aureus) and R5995 (vancomycin-intermediateS. aureus) were evaluated in a two-compartment hollow-fiberin vitropharmacokinetic/pharmacodynamic model at a starting inoculum of 107CFU/ml for 96 h. Simulated regimens were ceftaroline at 600 mg every 12 h (q12h) (maximum free-drug concentration [fCmax], 15.2 μg/ml; serum half-life [t1/2], 2.3 h), daptomycin at 6 mg/kg q24h (fCmax, 7.9 μg/ml;t1/2, 8 h), and daptomycin at 10 mg/kg q24h (fCmax, 15.2 μg/ml;t1/2, 8 h). Differences in CFU/ml between 24 and 96 h were evaluated by analysis of variance with Tukey's post-hoc test. Bactericidal activity was defined as a ≥3-log10CFU/ml decrease in the colony count from the initial inoculum. The ceftaroline MIC values were 0.25, 0.5, 0.5, and 0.5 μg/ml, and the daptomycin MIC values were 2, 2, 4, and 4 μg/ml for R5717, R5563, R5996, and R5995, respectively. Ceftaroline displayed sustained bactericidal activity against 3 of the 4 strains at 96 h (R5717, −3.1 log10CFU/ml; R5563, −2.5 log10CFU/ml; R5996, −5.77 log10CFU/ml; R5995, −6.38 log10CFU/ml). Regrowth occurred during the daptomycin at 6-mg/kg q24h regimen (4 strains) and the daptomycin at 10-mg/kg q24h regimen (3 strains). At 96 h, ceftaroline was significantly more active, resulting in CFU/ml counts lower than those obtained with daptomycin at 6 mg/kg q24h (4 strains,P≤ 0.008) and daptomycin at 10 mg/kg q24 h (3 strains,P≤ 0.001). Isolates with increased MIC values for daptomycin (all 4 strains) but not for ceftaroline were recovered. Ceftaroline was effective against the 4 isolates tested and may provide a clinical option for the treatment of DNS MRSA infections.


2013 ◽  
Vol 57 (11) ◽  
pp. 5717-5720 ◽  
Author(s):  
Hung-Jen Tang ◽  
Chi-Chung Chen ◽  
Kuo-Chen Cheng ◽  
Kuan-Ying Wu ◽  
Yi-Chung Lin ◽  
...  

ABSTRACTTo compare thein vitroantibacterial efficacies and resistance profiles of rifampin-based combinations against methicillin-resistantStaphylococcus aureus(MRSA) in a biofilm model, the antibacterial activities of vancomycin, teicoplanin, daptomycin, minocycline, linezolid, fusidic acid, fosfomycin, and tigecycline alone or in combination with rifampin against biofilm-embedded MRSA were measured. The rifampin-resistant mutation frequencies were evaluated. Of the rifampin-based combinations, rifampin enhances the antibacterial activities of and even synergizes with fusidic acid, tigecycline, and, to a lesser extent, linezolid, fosfomycin, and minocycline against biofilm-embedded MRSA. Such combinations with weaker rifampin resistance induction activities may provide a therapeutic advantage in MRSA biofilm-related infections.


2007 ◽  
Vol 51 (7) ◽  
pp. 2582-2586 ◽  
Author(s):  
Pamela A. Moise ◽  
George Sakoulas ◽  
Alan Forrest ◽  
Jerome J. Schentag

ABSTRACT We examined the relationship between the time to clearance of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia while patients were receiving vancomycin therapy and the in vitro bactericidal activity of vancomycin. Vancomycin killing assays were performed with 34 MRSA bloodstream isolates (17 accessory gene regulator group II [agr-II] and 17 non-agr-II isolates) from 34 different patients with MRSA bacteremia for whom clinical and microbiological outcomes data were available. Vancomycin doses were prospectively adjusted to achieve peak plasma concentrations of 28 to 32 μg/ml and trough concentrations of 8 to 12 μg/ml. Bactericidal assays were performed over 24 h with ∼107 to 108 CFU/ml in broth containing 16 μg/ml vancomycin. The median time to clearance of bacteremia was 6.5 days for patients with MRSA isolates demonstrating ≥2.5 reductions in log10 CFU/ml at 24 h and >10.5 days for patients with MRSA isolates demonstrating <2.5 log10 CFU/ml by 24 h (P = 0.025). The median time to clearance was significantly longer with MRSA isolates with vancomycin MICs of 2.0 μg/ml compared to that with MRSA isolates with MICs of ≤1.0 μg/ml (P = 0.019). The bacteremia caused by MRSA isolates with absent or severely reduced delta-hemolysin expression was of a longer duration of bacteremia (10 days and 6.5 days, respectively; P = 0.27) and had a decreased probability of eradication (44% and 78%, respectively; P = 0.086). We conclude that strain-specific microbiological features of MRSA, such as increased vancomycin MICs and decreased killing by vancomycin, appear to be predictive of prolonged MRSA bacteremia while patients are receiving vancomycin therapy. Prolonged bacteremia and decreased delta-hemolysin expression may also be related. Evaluation of these properties may be useful in the consideration of antimicrobial therapies that can be used as alternatives to vancomycin for the treatment of MRSA bacteremia.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Jordan R. Smith ◽  
Juwon Yim ◽  
Seth Rice ◽  
Kyle Stamper ◽  
Razie Kebriaei ◽  
...  

ABSTRACT Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen responsible for health care-associated infections, and treatment options are limited. Tedizolid (TZD) is a novel oxazolidinone antibiotic with activity against MRSA. Previously, daptomycin (DAP) has demonstrated synergy with other antibiotics against MRSA. We sought to determine the efficacy of the combination of TZD and DAP against MRSA in an in vitro model of simulated endocardial vegetations (SEVs). TZD simulations of 200 mg once daily and DAP simulations of 6 mg/kg of body weight and 10 mg/kg once daily were tested alone and in the combinations TZD plus DAP at 6 mg/kg or DAP at 10 mg/kg against two clinical strains of MRSA, 494 and 67. These regimens were tested in SEV models over 8 days to determine the antibacterial activity of the regimens and whether synergy or antagonism might be present between the agents. Against both strains 494 and 67 and at both DAP dose regimens, the combination of TZD and DAP was antagonistic at 192 h. In all cases, DAP alone was statistically superior to DAP plus TZD. When the combination was stopped after 96 h, transitioning to DAP at 6 mg/kg or DAP at 10 mg/kg alone resulted in better antibacterial activity than either of the TZD-plus-DAP combinations, further demonstrating antagonistic effects. Against MRSA, we demonstrated that TZD and DAP have antagonistic activity that hinders their overall antimicrobial efficacy. The exact nature of this antagonistic relationship is still undetermined, but its presence warrants further study of the potentially harmful grouping of the two antibiotics in clinical use.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 696 ◽  
Author(s):  
Jacinda C. Abdul-Mutakabbir ◽  
Razieh Kebriaei ◽  
Kyle C. Stamper ◽  
Zain Sheikh ◽  
Philip T. Maassen ◽  
...  

The most efficacious antimicrobial therapy to aid in the successful elimination of resistant S. aureus infections is unknown. In this study, we evaluated varying phenotypes of S. aureus against dalbavancin (DAL), vancomycin (VAN), and daptomycin (DAP) alone and in combination with cefazolin (CFZ). The objective of this study was to observe whether there was a therapeutic improvement in adding a beta-lactam to a glycopeptide, lipopeptide, or a lipoglycopeptide. We completed a series of in vitro tests including minimum inhibitory concentration testing (MIC) of the antimicrobials in combination, time-kill analysis (TKA), and a 168 h (7-day) one-compartment pharmacokinetic/pharmacodynamic (PK/PD) model on two daptomycin non-susceptible (DNS), vancomycin intermediate S. aureus strains (VISA), D712 and 6913. Results from our MIC testing demonstrated a minimum 2-fold and a maximum 32-fold reduction in MIC values for DAL, VAN, and DAP in combination with CFZ, in contrast to either agent used alone. The TKAs completed on four strains paralleled the enhanced activity demonstrated via the combination MICs. In the one-compartment PK/PD models, the combination of DAP plus CFZ or VAN plus CFZ resulted in a significant (p < 0.001) improvement in bactericidal activity and overall reduction in CFU/ml over the 7-day period. While the addition of CFZ to DAL improved time to bactericidal activity, DAL alone demonstrated equal and more sustained overall activity compared to all other treatments. The use of DAL alone, with or without CFZ and the combinations of VAN or DAP with CFZ appear to result in increased bactericidal activity against various recalcitrant S. aureus phenotypes.


Sign in / Sign up

Export Citation Format

Share Document