scholarly journals Synergistic Antifungal Effect of Amphotericin B-Loaded Poly(Lactic-Co-Glycolic Acid) Nanoparticles and Ultrasound againstCandida albicansBiofilms

2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Min Yang ◽  
Kaiyue Du ◽  
Yuru Hou ◽  
Shuang Xie ◽  
Yu Dong ◽  
...  

ABSTRACTCandida albicansis a human opportunistic pathogen that causes superficial and life-threatening infections. An important reason for the failure of current antifungal drugs is related to biofilm formation, mostly associated with implanted medical devices. The present study investigated the synergistic antifungal efficacy of low-frequency and low-intensity ultrasound combined with amphotericin B (AmB)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (AmB-NPs) againstC. albicansbiofilms. AmB-NPs were prepared by a double-emulsion method and demonstrated lower toxicity than free AmB. We then established biofilms and treated them with ultrasound and AmB-NPs separately or jointlyin vitroandin vivo. The results demonstrated that the activity, biomass, and proteinase and phospholipase activities of biofilms were decreased significantly after the combination treatment of AmB-NPs with 42 kHz of ultrasound irradiation at an intensity of 0.30 W/cm2for 15 min compared with the controls, with AmB alone, or with ultrasound treatment alone (P < 0.01). The morphology of the biofilms was altered remarkably after joint treatment based on confocal laser scanning microscopy (CLSM), especially in regard to reduced thickness and loosened structure. Furthermore, the same synergistic effects were found in a subcutaneous catheter biofilm rat model. The number of CFU from the catheter exhibited a significant reduction after joint treatment with AmB-NP and ultrasound for seven continuous days, and CLSM and scanning electron microscopy (SEM) images revealed that the biofilm on the catheter surface was substantially eliminated. This method may provide a new noninvasive, safe, and effective therapy forC. albicansbiofilm infection.

Author(s):  
Lisa Kirchhoff ◽  
Silke Dittmer ◽  
Ann-Kathrin Weisner ◽  
Jan Buer ◽  
Peter-Michael Rath ◽  
...  

Abstract Objectives Patients with immunodeficiency or cystic fibrosis frequently suffer from respiratory fungal infections. In particular, biofilm-associated fungi cause refractory infection manifestations, linked to increased resistance to anti-infective agents. One emerging filamentous fungus is Lomentospora prolificans. Here, the biofilm-formation capabilities of L. prolificans isolates were investigated and the susceptibility of biofilms to various antifungal agents was analysed. Methods Biofilm formation of L. prolificans (n = 11) was estimated by crystal violet stain and antibiofilm activity was additionally determined via detection of metabolically active biofilm using an XTT assay. Amphotericin B, micafungin, voriconazole and olorofim were compared with regard to their antibiofilm effects when added prior to adhesion, after adhesion and on mature and preformed fungal biofilms. Imaging via confocal laser scanning microscopy was carried out to demonstrate the effect of drug treatment on the fungal biofilm. Results Antibiofilm activities of the tested antifungal agents were shown to be most effective on adherent cells whilst mature biofilm was the most resistant. The most promising antibiofilm effects were detected with voriconazole and olorofim. Olorofim showed an average minimum biofilm eradication concentration (MBEC) of 0.06 mg/L, when added prior to and after adhesion. The MBECs of voriconazole were ≤4 mg/L. On mature biofilm the MBECs of olorofim and voriconazole were higher than the previously determined MICs against planktonic cultures. In contrast, amphotericin B and especially micafungin did not exhibit sufficient antibiofilm activity against L. prolificans. Conclusions To our knowledge, this is the first study demonstrating the antibiofilm potential of olorofim against the human pathogenic fungus L. prolificans.


2011 ◽  
Vol 78 (4) ◽  
pp. 1157-1167 ◽  
Author(s):  
Anna Rusznyák ◽  
Denise M. Akob ◽  
Sándor Nietzsche ◽  
Karin Eusterhues ◽  
Kai Uwe Totsche ◽  
...  

ABSTRACTKarstic caves represent one of the most important subterranean carbon storages on Earth and provide windows into the subsurface. The recent discovery of the Herrenberg Cave, Germany, gave us the opportunity to investigate the diversity and potential role of bacteria in carbonate mineral formation. Calcite was the only mineral observed by Raman spectroscopy to precipitate as stalactites from seepage water. Bacterial cells were found on the surface and interior of stalactites by confocal laser scanning microscopy. Proteobacteria dominated the microbial communities inhabiting stalactites, representing more than 70% of total 16S rRNA gene clones. Proteobacteria formed 22 to 34% of the detected communities in fluvial sediments, and a large fraction of these bacteria were also metabolically active. A total of 9 isolates, belonging to the generaArthrobacter,Flavobacterium,Pseudomonas,Rhodococcus,Serratia, andStenotrophomonas, grew on alkaline carbonate-precipitating medium. Two cultures with the most intense precipitate formation,Arthrobacter sulfonivoransandRhodococcus globerulus, grew as aggregates, produced extracellular polymeric substances (EPS), and formed mixtures of calcite, vaterite, and monohydrocalcite.R. globerulusformed idiomorphous crystals with rhombohedral morphology, whereasA. sulfonivoransformed xenomorphous globular crystals, evidence for taxon-specific crystal morphologies. The results of this study highlighted the importance of combining various techniques in order to understand the geomicrobiology of karstic caves, but further studies are needed to determine whether the mineralogical biosignatures found in nutrient-rich media can also be found in oligotrophic caves.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Alison A. Jack ◽  
Saira Khan ◽  
Lydia C. Powell ◽  
Manon F. Pritchard ◽  
Konrad Beck ◽  
...  

ABSTRACT Pseudomonas aeruginosa plays a major role in many chronic infections. Its ability to readily form biofilms contributes to its success as an opportunistic pathogen and its resistance/tolerance to antimicrobial/antibiotic therapy. A low-molecular-weight alginate oligomer (OligoG CF-5/20) derived from marine algae has previously been shown to impair motility in P. aeruginosa biofilms and disrupt pseudomonal biofilm assembly. As these bacterial phenotypes are regulated by quorum sensing (QS), we hypothesized that OligoG CF-5/20 may induce alterations in QS signaling in P. aeruginosa . QS regulation was studied by using Chromobacterium violaceum CV026 biosensor assays that showed a significant reduction in acyl homoserine lactone (AHL) production following OligoG CF-5/20 treatment (≥2%; P < 0.05). This effect was confirmed by liquid chromatography-mass spectrometry analysis of C 4 -AHL and 3-oxo-C 12 -AHL production (≥2%; P < 0.05). Moreover, quantitative PCR showed that reduced expression of both the las and rhl systems was induced following 24 h of treatment with OligoG CF-5/20 (≥0.2%; P < 0.05). Circular dichroism spectroscopy indicated that these alterations were not due to steric interaction between the AHL and OligoG CF-5/20. Confocal laser scanning microscopy (CLSM) and COMSTAT image analysis demonstrated that OligoG CF-5/20-treated biofilms had a dose-dependent decrease in biomass that was associated with inhibition of extracellular DNA synthesis (≥0.5%; P < 0.05). These changes correlated with alterations in the extracellular production of the pseudomonal virulence factors pyocyanin, rhamnolipids, elastase, and total protease ( P < 0.05). The ability of OligoG CF-5/20 to modify QS signaling in P. aeruginosa PAO1 may influence critical downstream functions such as virulence factor production and biofilm formation.


2010 ◽  
Vol 16 (6) ◽  
pp. 735-746 ◽  
Author(s):  
Zuzana Burdíková ◽  
Martin Čapek ◽  
Pavel Ostašov ◽  
Jiří Machač ◽  
Radek Pelc ◽  
...  

AbstractTestate amoebae (TA) are a group of free-living protozoa, important in ecology and paleoecology. Testate amoebae taxonomy is mainly based on the morphological features of the shell, as examined by means of light microscopy or (environmental) scanning electron microscopy (SEM/ESEM). We explored the potential applications of confocal laser scanning microscopy (CLSM), two photon excitation microscopy (TPEM), phase contrast, differential interference contrast (DIC Nomarski), and polarization microscopy to visualize TA shells and inner structures of living cells, which is not possible by SEM or environmental SEM. Images captured by CLSM and TPEM were utilized to create three-dimensional (3D) visualizations and to evaluate biovolume inside the shell by stereological methods, to assess the function of TA in ecosystems. This approach broadens the understanding of TA cell and shell morphology, and inner structures including organelles and endosymbionts, with potential implications in taxonomy and ecophysiology.


2016 ◽  
Vol 60 (8) ◽  
pp. 4670-4676 ◽  
Author(s):  
Yung-Chih Wang ◽  
Shu-Chen Kuo ◽  
Ya-Sung Yang ◽  
Yi-Tzu Lee ◽  
Chun-Hsiang Chiu ◽  
...  

ABSTRACTAcinetobacter baumanniibiofilms are difficult to eradicate. We investigated the effects of meropenem (2 mg/liter), imipenem (2 mg/liter), sulbactam (4 mg/liter), colistin (2 mg/liter), and tigecycline (2 mg/liter), alone or in combination, on biofilm-embedded carbapenem-resistant and carbapenem-susceptibleA. baumannii(CRAb and CSAb, respectively) cells, as well as on the architecture of the biofilms.A. baumanniiATCC 15151 (Ab15151) and its OXA-82-overproducing transformant, along with two clinical CSAb and two clinical CRAb isolates of differing clonalities, were used. The minimal bactericidal concentrations for biofilm-embedded cells of the six tested isolates were >50-fold those of their planktonic cells. When used individually, meropenem exhibited a higher killing effect than the other four antimicrobials on biofilm-embedded CSAb cells in the colony biofilm assay. For two clinical CRAb isolates, meropenem plus sulbactam or sulbactam plus tigecycline showed >100-fold the bactericidal effect exhibited by these agents used alone after 48 h of treatment. The effect of antimicrobials on the architecture of Ab15151 biofilm emitting green fluorescence was determined by confocal laser scanning microscopy using COMSTAT software. Significant decreases in the maximum biofilm thickness were observed after exposure to meropenem and imipenem. Meropenem plus sulbactam significantly decreased the biomass and mean thickness and increased the roughness coefficient of biofilms, but sulbactam plus tigecycline only decreased the maximum and mean biofilm thickness compared to any of these agents used alone. Meropenem was active against biofilm-embedded CSAb, whereas meropenem plus sulbactam exhibited synergism against biofilm-embedded CRAb and caused significantly more damage to the biofilm architecture than did any of the agents used alone.


2011 ◽  
Vol 55 (6) ◽  
pp. 2648-2654 ◽  
Author(s):  
A. Bridier ◽  
F. Dubois-Brissonnet ◽  
G. Greub ◽  
V. Thomas ◽  
R. Briandet

ABSTRACTThe biocidal activity of peracetic acid (PAA) and benzalkonium chloride (BAC) onPseudomonas aeruginosabiofilms was investigated by using a recently developed confocal laser scanning microscopy (CLSM) method that enables the direct and real-time visualization of cell inactivation within the structure. This technique is based on monitoring the loss of fluorescence that corresponds to the leakage of a fluorophore out of cells due to membrane permeabilization by the biocides. Although this approach has previously been used with success with various Gram-positive species, it is not directly applicable to the visualization of Gram-negative strains such asP. aeruginosa, particularly because of limitations regarding fluorescence staining. After adapting the staining procedure toP. aeruginosa, the action of PAA and BAC on the biofilm formed by strain ATCC 15442 was investigated. The results revealed specific inactivation patterns as a function of the mode of action of the biocides. While PAA treatment triggered a uniform loss of fluorescence in the structure, the action of BAC was first localized at the periphery of cell clusters and then gradually spread throughout the biofilm. Visualization of the action of BAC in biofilms formed by three clinical isolates then confirmed the presence of a delay in penetration, showing that diffusion-reaction limitations could provide a major explanation for the resistance ofP. aeruginosabiofilms to this biocide. Biochemical analysis suggested a key role for extracellular matrix characteristics in these processes.


2011 ◽  
Vol 55 (11) ◽  
pp. 5331-5337 ◽  
Author(s):  
Nianan He ◽  
Jian Hu ◽  
Huayong Liu ◽  
Tao Zhu ◽  
Beijian Huang ◽  
...  

ABSTRACTTreating biofilm infections on implanted medical devices is formidable, even with extensive antibiotic therapy. The aim of this study was to investigate whether ultrasound (US)-targeted microbubble (MB) destruction (UTMD) could enhance vancomycin activity againstStaphylococcus epidermidisRP62A biofilms. Twelve-hour biofilms were treated with vancomycin combined with UTMD. The vancomycin and MB (SonoVue) were used at concentrations of 100 μg/ml and 30% (vol/vol), respectively, in studiesin vitro. After US exposure (0.08 MHz, 1.0 W/cm2, 50% duty cycle, and 10-min duration), the biofilms were cultured at 37°C for another 12 h. The results showed that many micropores were found in biofilms treated with vancomycin combined with UTMD. Biofilm densities (A570values) and the viable counts ofS. epidermidisrecovered from the biofilm were significantly decreased compared with those of any other groups. Furthermore, the highest percentage of dead cells was found, using confocal laser scanning microscopy, in the biofilm treated with vancomycin combined with UTMD. The viable counts of bacteria in biofilms in anin vivorabbit model also confirmed the enhanced effect of vancomycin combined with UTMD. UTMD may have great potential for improving antibiotic activity against biofilm infections.


2019 ◽  
Vol 85 (16) ◽  
Author(s):  
Davy Verheyen ◽  
Xiang Ming Xu ◽  
Marlies Govaert ◽  
Maria Baka ◽  
Torstein Skåra ◽  
...  

ABSTRACTFood microstructure significantly affects microbial growth dynamics, but knowledge concerning the exact influencing mechanisms at a microscopic scale is limited. The food microstructural influence onListeria monocytogenes(green fluorescent protein strain) growth at 10°C in fish-based food model systems was investigated by confocal laser scanning microscopy. The model systems had different microstructures, i.e., liquid, xanthan (high-viscosity liquid), aqueous gel, and emulsion and gelled emulsion systems varying in fat content. Bacteria grew as single cells, small aggregates, and microcolonies of different sizes (based on colony radii [size I, 1.5 to 5.0 μm; size II, 5.0 to 10.0 μm; size III, 10.0 to 15.0 μm; and size IV, ≥15 μm]). In the liquid, small aggregates and size I microcolonies were predominantly present, while size II and III microcolonies were predominant in the xanthan and aqueous gel. Cells in the emulsions and gelled emulsions grew in the aqueous phase and on the fat-water interface. A microbial adhesion to solvent assay demonstrated limited bacterial nonpolar solvent affinities, implying that this behavior was probably not caused by cell surface hydrophobicity. In systems containing 1 and 5% fat, the largest cell volume was mainly represented by size I and II microcolonies, while at 10 and 20% fat a few size IV microcolonies comprised nearly the total cell volume. Microscopic results (concerning, e.g., growth morphology, microcolony size, intercolony distances, and the preferred phase for growth) were related to previously obtained macroscopic growth dynamics in the model systems for anL. monocytogenesstrain cocktail, leading to more substantiated explanations for the influence of food microstructural aspects on lag phase duration and growth rate.IMPORTANCEListeria monocytogenesis one of the most hazardous foodborne pathogens due to the high fatality rate of the disease (i.e., listeriosis). In this study, the growth behavior ofL. monocytogeneswas investigated at a microscopic scale in food model systems that mimic processed fish products (e.g., fish paté and fish soup), and the results were related to macroscopic growth parameters. Many studies have previously focused on the food microstructural influence on microbial growth. The novelty of this work lies in (i) the microscopic investigation of products with a complex composition and/or structure using confocal laser scanning microscopy and (ii) the direct link to the macroscopic level. Growth behavior (i.e., concerning bacterial growth morphology and preferred phase for growth) was more complex than assumed in common macroscopic studies. Consequently, the effectiveness of industrial antimicrobial food preservation technologies (e.g., thermal processing) might be overestimated for certain products, which may have critical food safety implications.


2011 ◽  
Vol 77 (17) ◽  
pp. 6208-6214 ◽  
Author(s):  
I. Grand ◽  
M.-N. Bellon-Fontaine ◽  
J.-M. Herry ◽  
D. Hilaire ◽  
F.-X. Moriconi ◽  
...  

ABSTRACTThe standard test methods used to assess the efficiency of a disinfectant applied to surfaces are often based on counting the microbial survivors sampled in a liquid, but total cell removal from surfaces is seldom achieved. One might therefore wonder whether evaluations of microbial survivors in liquid-sampled cells are representative of the levels of survivors in whole populations. The present study was thus designed to determine the “damaged/undamaged” status induced by a peracetic acid disinfection forBacillus atrophaeusspores deposited on glass coupons directly on this substrate and to compare it to the status of spores collected in liquid by a sampling procedure. The method utilized to assess the viability of both surface-associated and liquid-sampled spores included fluorescence labeling with a combination of Syto 61 and Chemchrome V6 dyes and quantifications by analyzing the images acquired by confocal laser scanning microscopy. The principal result of the study was that the viability of spores sampled in the liquid was found to be poorer than that of surface-associated spores. For example, after 2 min of peracetic acid disinfection, less than 17% ± 5% of viable cells were detected among liquid-sampled cells compared to 79% ± 5% or 47% ± 4%, respectively, when the viability was evaluated on the surface after or without the sampling procedure. Moreover, assessments of the survivors collected in the liquid phase, evaluated using the microscopic method and standard plate counts, were well correlated. Evaluations based on the determination of survivors among the liquid-sampled cells can thus overestimate the efficiency of surface disinfection procedures.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wanju Li ◽  
Minghui Liu ◽  
Hankun Wang ◽  
Hongbo Zhai ◽  
Yan Yu

AbstractIt is well known the properties of resin impregnation wood is significantly influenced by the specific distribution pattern of resin in the modified wood. In this work, bamboo was furfurylated with an improved process. In addition to testing and evaluating its main physical, mechanical and durable properties, it was explored how the furfuryl alcohol (FA) resin is distributed in the furfurylated bamboo. To achieve this goal, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), nanoindentation, and imaging Fourier transform infrared microscopy (imaging FT-IR) were applied. SEM images demonstrates FA resin is mainly located in the parenchymal cell cavity of bamboo, however the existence of FA resin in the small cavities of the bamboo fibers is also observed by CLSM. In addition, the result of nanoindentation and imaging FT-IR both indicates that FA can penetrate and polymerize within the cell wall of the bamboo fiber. It is then concluded the heterogeneous but multi-scale distribution of FA resin should be responsible for the significant improvement of furfurylated bamboo in both dimensional stability and biological durability.


Sign in / Sign up

Export Citation Format

Share Document