scholarly journals Calcite Biomineralization by Bacterial Isolates from the Recently Discovered Pristine Karstic Herrenberg Cave

2011 ◽  
Vol 78 (4) ◽  
pp. 1157-1167 ◽  
Author(s):  
Anna Rusznyák ◽  
Denise M. Akob ◽  
Sándor Nietzsche ◽  
Karin Eusterhues ◽  
Kai Uwe Totsche ◽  
...  

ABSTRACTKarstic caves represent one of the most important subterranean carbon storages on Earth and provide windows into the subsurface. The recent discovery of the Herrenberg Cave, Germany, gave us the opportunity to investigate the diversity and potential role of bacteria in carbonate mineral formation. Calcite was the only mineral observed by Raman spectroscopy to precipitate as stalactites from seepage water. Bacterial cells were found on the surface and interior of stalactites by confocal laser scanning microscopy. Proteobacteria dominated the microbial communities inhabiting stalactites, representing more than 70% of total 16S rRNA gene clones. Proteobacteria formed 22 to 34% of the detected communities in fluvial sediments, and a large fraction of these bacteria were also metabolically active. A total of 9 isolates, belonging to the generaArthrobacter,Flavobacterium,Pseudomonas,Rhodococcus,Serratia, andStenotrophomonas, grew on alkaline carbonate-precipitating medium. Two cultures with the most intense precipitate formation,Arthrobacter sulfonivoransandRhodococcus globerulus, grew as aggregates, produced extracellular polymeric substances (EPS), and formed mixtures of calcite, vaterite, and monohydrocalcite.R. globerulusformed idiomorphous crystals with rhombohedral morphology, whereasA. sulfonivoransformed xenomorphous globular crystals, evidence for taxon-specific crystal morphologies. The results of this study highlighted the importance of combining various techniques in order to understand the geomicrobiology of karstic caves, but further studies are needed to determine whether the mineralogical biosignatures found in nutrient-rich media can also be found in oligotrophic caves.

2015 ◽  
Vol 81 (12) ◽  
pp. 4026-4036 ◽  
Author(s):  
Shirin Ghods ◽  
Ian M. Sims ◽  
M. Fata Moradali ◽  
Bernd H. A. Rehm

ABSTRACTPseudomonas syringaepv. actinidiae is the major cause of bacterial canker and is a severe threat to kiwifruit production worldwide. Many aspects of the disease caused byP. syringaepv. actinidiae, such as the pathogenicity-relevant formation of a biofilm composed of extracellular polymeric substances (EPSs), are still unknown. Here, a highly virulent strain ofP. syringaepv. actinidiae, NZ V-13, was studied with respect to biofilm formation and architecture using a flow cell system combined with confocal laser scanning microscopy. The biofilm formed byP. syringaepv. actinidiae NZ V-13 was heterogeneous, consisting of a thin cellular base layer 5 μm thick and microcolonies with irregular structures. The major component of the EPSs produced byP. syringaepv. actinidiae NZ V-13 bacteria was isolated and identified to be an exopolysaccharide. Extensive compositional and structural analysis showed that rhamnose, fucose, and glucose were the major constituents, present at a ratio of 5:1.5:2. Experimental evidence thatP. syringaepv. actinidiae NZ V-13 produces two polysaccharides, a branched α-d-rhamnan with side chains of terminal α-d-Fucfand an α-d-1,4-linked glucan, was obtained. The susceptibility of the cells in biofilms to kasugamycin and chlorine dioxide was assessed. About 64 and 73% ofP. syringaepv. actinidiae NZ V-13 cells in biofilms were killed when kasugamycin and chlorine dioxide were used at 5 and 10 ppm, respectively. Kasugamycin inhibited the attachment ofP. syringaepv. actinidiae NZ V-13 to solid surfaces at concentrations of 80 and 100 ppm. Kasugamycin was bacteriostatic againstP. syringaepv. actinidiae NZ V-13 growth in the planktonic mode, with the MIC being 40 to 60 ppm and a bactericidal effect being found at 100 ppm. Here we studied the formation, architecture, and composition ofP. syringaepv. actinidiae biofilms as well as used the biofilm as a model to assess the efficacies of bactericidal compounds.


2011 ◽  
Vol 77 (9) ◽  
pp. 3017-3022 ◽  
Author(s):  
Yury Shamis ◽  
Alex Taube ◽  
Natasa Mitik-Dineva ◽  
Rodney Croft ◽  
Russell J. Crawford ◽  
...  

ABSTRACTThe present study investigated the effects of microwave (MW) radiation applied under a sublethal temperature onEscherichia coli. The experiments were conducted at a frequency of 18 GHz and at a temperature below 40°C to avoid the thermal degradation of bacterial cells during exposure. The absorbed power was calculated to be 1,500 kW/m3, and the electric field was determined to be 300 V/m. Both values were theoretically confirmed using CST Microwave Studio 3D Electromagnetic Simulation Software. As a negative control,E. colicells were also thermally heated to temperatures up to 40°C using Peltier plate heating. Scanning electron microscopy (SEM) analysis performed immediately after MW exposure revealed that theE. colicells exhibited a cell morphology significantly different from that of the negative controls. This MW effect, however, appeared to be temporary, as following a further 10-min elapsed period, the cell morphology appeared to revert to a state that was identical to that of the untreated controls. Confocal laser scanning microscopy (CLSM) revealed that fluorescein isothiocyanate (FITC)-conjugated dextran (150 kDa) was taken up by the MW-treated cells, suggesting that pores had formed within the cell membrane. Cell viability experiments revealed that the MW treatment was not bactericidal, since 88% of the cells were recovered after radiation. It is proposed that one of the effects of exposingE. colicells to MW radiation under sublethal temperature conditions is that the cell surface undergoes a modification that is electrokinetic in nature, resulting in a reversible MW-induced poration of the cell membrane.


2008 ◽  
Vol 74 (5) ◽  
pp. 1517-1526 ◽  
Author(s):  
Poul Larsen ◽  
Jeppe Lund Nielsen ◽  
Daniel Otzen ◽  
Per Halkjær Nielsen

ABSTRACT Amyloid proteins (fimbriae or other microbial surface-associated structures) are expressed by many types of bacteria, not yet identified, in biofilms from various habitats, where they likely are of key importance to biofilm formation and biofilm properties. As these amyloids are potentially of great importance to the floc properties in activated sludge wastewater treatment plants (WWTP), the abundance of amyloid adhesins in activated sludge flocs from different WWTP and the identity of bacteria producing these were investigated. Amyloid adhesins were quantified using a combination of conformationally specific antibodies targeting amyloid fibrils, propidium iodide to target all fixed bacterial cells, confocal laser scanning microscopy, and digital image analysis. The biovolume fraction containing amyloid adhesins ranged from 10 to 40% in activated sludge from 10 different WWTP. The identity of bacteria producing amyloid adhesins was determined using fluorescence in situ hybridization with oligonucleotide probes in combination with antibodies or thioflavin T staining. Among the microcolony-forming bacteria, amyloids were primarily detected among Alpha- and Betaproteobacteria and Actinobacteria. A more detailed analysis revealed that many denitrifiers (from Thauera, Azoarcus, Zoogloea, and Aquaspirillum-related organisms) and Actinobacteria-related polyphosphate-accumulating organisms most likely produced amyloid adhesins, whereas nitrifiers did not. Many filamentous bacteria also expressed amyloid adhesins, including several Alphaproteobacteria (e.g., Meganema perideroedes), some Betaproteobacteria (e.g., Aquaspirillum-related filaments), Gammaproteobacteria (Thiothrix), Bacteroidetes, Chloroflexi (e.g., Eikelboom type 1851), and some foam-forming Actinobacteria (e.g., Gordonia amarae). The results show that amyloid adhesins were an abundant component of activated sludge extracellular polymeric substances and seem to have unexpected, divers functions.


2012 ◽  
Vol 56 (10) ◽  
pp. 5134-5141 ◽  
Author(s):  
Saira Khan ◽  
Anne Tøndervik ◽  
Håvard Sletta ◽  
Geir Klinkenberg ◽  
Charlotte Emanuel ◽  
...  

ABSTRACTThe uncontrolled, often inappropriate use of antibiotics has resulted in the increasing prevalence of antibiotic-resistant pathogens, with major cost implications for both United States and European health care systems. We describe the utilization of a low-molecular-weight oligosaccharide nanomedicine (OligoG), based on the biopolymer alginate, which is able to perturb multidrug-resistant (MDR) bacteria by modulating biofilm formation and persistence and reducing resistance to antibiotic treatment, as evident using conventional and robotic MIC screening and microscopic analyses of biofilm structure. OligoG increased (up to 512-fold) the efficacy of conventional antibiotics against important MDR pathogens, includingPseudomonas,Acinetobacter, andBurkholderiaspp., appearing to be effective with several classes of antibiotic (i.e., macrolides, β-lactams, and tetracyclines). Using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), increasing concentrations (2%, 6%, and 10%) of alginate oligomer were shown to have a direct effect on the quality of the biofilms produced and on the health of the cells within that biofilm. Biofilm growth was visibly weakened in the presence of 10% OligoG, as seen by decreased biomass and increased intercellular spaces, with the bacterial cells themselves becoming distorted and uneven due to apparently damaged cell membranes. This report demonstrates the feasibility of reducing the tolerance of wound biofilms to antibiotics with the use of specific alginate preparations.


2020 ◽  
Author(s):  
S Ghods ◽  
Ian Sims ◽  
MF Moradali ◽  
BHA Rehma

© 2015, American Society for Microbiology. Pseudomonas syringae pv. actinidiae is the major cause of bacterial canker and is a severe threat to kiwifruit production worldwide. Many aspects of the disease caused by P. syringae pv. actinidiae, such as the pathogenicity-relevant formation of a biofilm composed of extracellular polymeric substances (EPSs), are still unknown. Here, a highly virulent strain of P. syringae pv. actinidiae, NZ V-13, was studied with respect to biofilm formation and architecture using a flow cell system combined with confocal laser scanning microscopy. The biofilm formed by P. syringae pv. actinidiae NZ V-13 was heterogeneous, consisting of a thin cellular base layer 5 μm thick and microcolonies with irregular structures. The major component of the EPSs produced by P. syringae pv. actinidiae NZ V-13 bacteria was isolated and identified to be an exopolysaccharide. Extensive compositional and structural analysis showed that rhamnose, fucose, and glucose were the major constituents, present at a ratio of 5:1.5:2. Experimental evidence that P. syringae pv. actinidiae NZ V-13 produces two polysaccharides, a branched α-D-rhamnan with side chains of terminal α-D-Fucf and an α-D-1,4-linked glucan, was obtained. The susceptibility of the cells in biofilms to kasugamycin and chlorine dioxide was assessed. About 64 and 73% of P. syringae pv. actinidiae NZ V-13 cells in biofilms were killed when kasugamycin and chlorine dioxide were used at 5 and 10 ppm, respectively. Kasugamycin inhibited the attachment of P. syringae pv. actinidiae NZ V-13 to solid surfaces at concentrations of 80 and 100 ppm. Kasugamycin was bacteriostatic against P. syringae pv. actinidiae NZ V-13 growth in the planktonic mode, with the MIC being 40 to 60 ppm and a bactericidal effect being found at 100 ppm. Here we studied the formation, architecture, and composition of P. syringae pv. actinidiae biofilms as well as used the biofilm as a model to assess the efficacies of bactericidal compounds.


2001 ◽  
Vol 67 (11) ◽  
pp. 5273-5284 ◽  
Author(s):  
Holger Daims ◽  
Jeppe L. Nielsen ◽  
Per H. Nielsen ◽  
Karl-Heinz Schleifer ◽  
Michael Wagner

ABSTRACT Uncultivated Nitrospira-like bacteria in different biofilm and activated-sludge samples were investigated by cultivation-independent molecular approaches. Initially, the phylogenetic affiliation of Nitrospira-like bacteria in a nitrifying biofilm was determined by 16S rRNA gene sequence analysis. Subsequently, a phylogenetic consensus tree of theNitrospira phylum including all publicly available sequences was constructed. This analysis revealed that the genusNitrospira consists of at least four distinct sublineages. Based on these data, two 16S rRNA-directed oligonucleotide probes specific for the phylum and genus Nitrospira, respectively, were developed and evaluated for suitability for fluorescence in situ hybridization (FISH). The probes were used to investigate the in situ architecture of cell aggregates ofNitrospira-like nitrite oxidizers in wastewater treatment plants by FISH, confocal laser scanning microscopy, and computer-aided three-dimensional visualization. Cavities and a network of cell-free channels inside the Nitrospiramicrocolonies were detected that were water permeable, as demonstrated by fluorescein staining. The uptake of different carbon sources byNitrospira-like bacteria within their natural habitat under different incubation conditions was studied by combined FISH and microautoradiography. Under aerobic conditions, theNitrospira-like bacteria in bioreactor samples took up inorganic carbon (as HCO3 − or as CO2) and pyruvate but not acetate, butyrate, and propionate, suggesting that these bacteria can grow mixotrophically in the presence of pyruvate. In contrast, no uptake by theNitrospira-like bacteria of any of the carbon sources tested was observed under anoxic or anaerobic conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Tatiana Ramirez-Mora ◽  
Claudia Dávila-Pérez ◽  
Fernando Torres-Méndez ◽  
Grettel Valle-Bourrouet

Endodontic persistent infections are often mediated by bacterial biofilms. This mode of bacterial growth is characterized by the presence of a matrix mainly composed of extracellular polymeric substances (EPSs) that protect the encased microorganisms. To establish better control and disinfection protocols, elucidation of the main components of biofilm matrices present in endodontic infections is required. The aim of the present study was to characterize the principal components ofE. faecalis,A. naeslundii, and dual-species biofilm matrices by means of Raman spectroscopy and confocal scanning laser microscopy (CSLM) techniques. The total biomass of biofilms was quantified via crystal violet assays, and the monospecies biofilms showed higher biomass than the dual-species biofilms. Raman spectroscopy and confocal laser scanning microscopy were used to identify the biochemical composition and structure of the biofilm matrices. Spectra originating from the biofilms of two endodontic pathogens show the presence of carbohydrates, proteins, fatty acids, and nucleic acids in all samples; however, variation in the levels of expression of these biomolecules allows spectroscopic differentiation of the biofilms using principal component analysis. This study is the first attempt to identify the composition of monospecies and dual-species biofilms of endodontic origin. Our data provides an important approach to the understanding of molecular dynamics of endodontic infections.


2020 ◽  
Vol 12 (21) ◽  
pp. 8863
Author(s):  
Jie Mei ◽  
Huize Chen ◽  
Qiang Liao ◽  
Abdul-Sattar Nizami ◽  
Ao Xia ◽  
...  

Dark fermentation of organic wastes, such as food waste and algae, via mixed hydrogen-producing bacteria (HPB) is considered a sustainable approach for hydrogen production. The biofilm system protects microorganisms from the harmful environment and avoids the excessive loss of bacteria caused by washout, which ensures that the dark fermentation process remains stable. In this study, a downflow anaerobic packed-bed reactor was commissioned to investigate the biofilm formation process of mixed HPB under various operational parameters. Scanning electron microscopy indicated changes in surface morphology during the biofilm formation period. Proteins and polysaccharides in extracellular polymeric substances were identified by confocal laser scanning microscopy to reveal their distribution characteristics. A hydraulic retention time of 0.5 d, a substrate concentration of 15 g/L and an HPB inoculum ratio of 35% were identified as the optimal operational parameters for biofilm formation. The diversity of bacteria between suspension and biofilm showed significantly different distributions; Clostridiales and Lactobacillales were identified as the dominant orders in the biofilm formation process. The abundances of Clostridiales and Lactobacillales were 15.1% and 56.2% in the biofilm, respectively.


2014 ◽  
Vol 13 (3) ◽  
pp. 271-277 ◽  
Author(s):  
Heather D. Smith ◽  
Mickael Baqué ◽  
Andrew G. Duncan ◽  
Christopher R. Lloyd ◽  
Christopher P. McKay ◽  
...  

AbstractThe Mojave Desert has been long considered a suitable terrestrial analogue to Mars in many geological and astrobiological aspects. The Silver Lake region in the Mojave Desert hosts several different rock types (talc, marble, quartz, white carbonate and red-coated carbonate) colonized by hypoliths within a few kilometres. This provides an opportunity to investigate the effect of rock type on hypolithic colonization in a given environment. Transmission measurements from 300 to 800 nm showed that the transmission of blue and UVA varied between rock types. The wavelength at which the transmission fell to 1% of the transmission at 600 nm was 475 nm for white carbonate and quartz, 425 nm for red-coated carbonate and talc and 380 nm for marble. The comparative analysis of the cyanobacterial component of hypoliths under different rocks, as revealed by sequencing 16S rRNA gene clone libraries, showed no significant variation with rock type; hypoliths were dominated by phylotypes of the genusChroococcidiopsis, although less abundant phylotypes of the genusLoriellopsis, LeptolyngbyaandScytonemaoccurred. The comparison of the confocal laser scanning microscopy-λ (CLSM-λ) scan analysis of the spectral emission of the photosynthetic pigments ofChroococcidiopsisin different rocks with the spectrum of isolatedChroococcidiopsissp. 029, revealed a 10 nm red shift in the emission fingerprinting for quartz and carbonate and a 5 nm red shift for talc samples. This result reflects the versatility ofChroococcidiopsisin inhabiting dry niches with different light availability for photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document