scholarly journals Susceptibility Testing of Antibiotics That Degrade Faster than the Doubling Time of Slow-Growing Mycobacteria: Ertapenem Sterilizing Effect versus Mycobacterium tuberculosis

2016 ◽  
Vol 60 (5) ◽  
pp. 3193-3195 ◽  
Author(s):  
Shashikant Srivastava ◽  
Sander P. van Rijn ◽  
A. Mireille A. Wessels ◽  
Jan-Willem C. Alffenaar ◽  
Tawanda Gumbo

ABSTRACTDrug susceptibility tests (DSTs) forMycobacterium tuberculosisrequire at least 7 days of incubation. Drugs that are unstable at 37°C, such as ertapenem, are likely to be degraded before killing or inhibiting slow-growing bacteria. This would alter the MICs of these drugs, including ertapenem, leading to falsely high MICs. Here, we describe a new strategy we developed to perform DSTs and measure MICs for such unstable compounds.

2014 ◽  
Vol 59 (3) ◽  
pp. 1542-1548 ◽  
Author(s):  
Yu-Tze Horng ◽  
Wen-Yih Jeng ◽  
Yih-Yuan Chen ◽  
Che-Hung Liu ◽  
Horng-Yunn Dou ◽  
...  

ABSTRACTMostMycobacterium tuberculosisrifampin-resistant strains have been associated with mutations in an 81-bp rifampin resistance-determining region (RRDR) in the generpoB. However, if this region alone were targeted, rifampin-resistant strains with mutations outside the RRDR would not be detected. In this study, among 51 rifampin-resistant clinical isolates analyzed by sequencing 1,681-bp-long DNA fragments containing the RRDR, 47 isolates contained mutations within the RRDR, three isolates contained mutations both within and outside the RRDR, and only one isolate had a single missense mutation (Arg548His) located outside the RRDR. A drug susceptibility test of recombinantMycobacterium smegmatisandM. tuberculosisisolates carrying mutatedrpoB(Arg548His) showed an increased MIC for rifampin compared to that of the control strains. Modeling of the Arg548His mutant RpoB-DNA complex revealed that the His548 side chain formed a more stable hydrogen bond structure than did Arg548, reducing the flexibility of the rifampin-resistant cluster II region of RpoB, suggesting that the RpoB Arg548His mutant does not effectively interact with rifampin and results in bacterial resistance to the drug. This is the first report on the relationship between the mutation in codon 548 of RpoB and rifampin resistance in tuberculosis. The novel mutational profile of therpoBgene described here will contribute to the comprehensive understanding of rifampin resistance patterns and to the development of a useful tool for simple and rapid drug susceptibility tests.


2016 ◽  
Vol 54 (12) ◽  
pp. 3022-3027 ◽  
Author(s):  
Sabine Hofmann-Thiel ◽  
Nikolay Molodtsov ◽  
Uladzimir Antonenka ◽  
Harald Hoffmann

The Abbott RealTi m e MTB (RT MTB) assay is a new automated nucleic acid amplification test for the detection of Mycobacterium tuberculosis complex (MTBC) in clinical specimens. In combination with the RealTi m e MTB INH/RIF (RT MTB INH/RIF) resistance assay, which can be applied to RT MTB-positive specimens as an add-on assay, the tests also indicate the genetic markers of resistance to isoniazid (INH) and rifampin (RIF). We aimed to evaluate the diagnostic sensitivity and specificity of RT MTB using different types of respiratory and extrapulmonary specimens and to compare performance characteristics directly with those of the FluoroType MTB assay. The resistance results obtained by RT MTB INH/RIF were compared to those from the GenoType MTBDR plus and from phenotypic drug susceptibility testing. A total of 715 clinical specimens were analyzed. Compared to culture, the overall sensitivity of RT MTB was 92.1%; the sensitivity rates for smear-positive and smear-negative samples were 100% and 76.2%, respectively. The sensitivities of smear-negative specimens were almost identical for respiratory (76.3%) and extrapulmonary (76%) specimens. Specificity rates were 100% and 95.8% for culture-negative specimens and those that grew nontuberculous mycobacteria, respectively. RT MTB INH/RIF was applied to 233 RT MTB-positive samples and identified resistance markers in 7.7% of samples. Agreement with phenotypic and genotypic drug susceptibility testing was 99.5%. In conclusion, RT MTB and RT MTB INH/RIF allow for the rapid and accurate diagnosis of tuberculosis (TB) in different types of specimens and reliably indicate resistance markers. The strengths of this system are the comparably high sensitivity with paucibacillary specimens, its ability to detect INH and RIF resistance, and its high-throughput capacities.


1987 ◽  
Vol 33 (12) ◽  
pp. 1064-1068 ◽  
Author(s):  
Adalbert Laszlo ◽  
Dorothy M. Helbecque ◽  
Walter Tostowaryk

Proficiency testing of indirect drug susceptibility tests of Mycobacterium tuberculosis was begun in 1985 by the Laboratory Centre for Disease Control (LCDC) with the participation of Provincial Public Health Laboratories in Canada. Comparable sets of 60 cultures of Mycobacterium tuberculosis representing 30 strains were distributed by LCDC to the participating laboratories to be tested for drug susceptibility against isoniazid, streptomycin, rifampin, and ethambutol using conventional methodologies. Intralaboratory agreement values determined by comparing results obtained on sets of duplicate cultures were high and were found to vary little from drug to drug and from laboratory to laboratory. Interlaboratory agreement was determined by comparing results reported by participating laboratories to those obtained by the Reference Laboratory. Agreement percentages were found to be lower for drug-resistant cultures than for drug-susceptible cultures. The reliability of drug susceptibility testing results was higher for isoniazid and rifampin, than for ethambutol and streptomycin. This study shows that the higher subsidiary drug concentrations do not compare well with main drug concentrations, especially in the case of streptomycin and ethambutol. The significance of the higher subsidiary concentrations in in vitro susceptibility testing is therefore in need of clarification. The proficiency testing results obtained in this study compare favorably with those reported in other developed countries despite the fact that a variety of testing procedures are used throughout the country.


2013 ◽  
Vol 57 (6) ◽  
pp. 2522-2525 ◽  
Author(s):  
Imran Ahmed ◽  
Kauser Jabeen ◽  
Raunaq Inayat ◽  
Rumina Hasan

ABSTRACTPakistan is a high-burden country for tuberculosis (TB). The emergence and increasing incidence of extensively drug-resistant (XDR) TB has been reported in Pakistan. Similarly, the prevalence of multidrug-resistant TB infections with fluoroquinolone resistance (pre-XDR) is also increasing. To treat these infections, local drug susceptibility patterns of alternate antituberculosis agents, including levofloxacin (LVX), linezolid (LZD), and amoxicillin-clavulanate (AMC), is urgently needed. The aim of this study was to determine the susceptibility frequencies of drug-resistant (DR)Mycobacterium tuberculosisagainst LVX, LZD, and AMC. All susceptibilities were determined on Middlebrook 7H10 agar. A critical concentration was used for LVX (1 μg/ml), whereas MICs were determined for LZD and AMC.M. tuberculosisH37Rv was used as a control strain. A total of 102M. tuberculosisisolates (XDR,n= 59; pre-XDR,n= 43) were tested. Resistance to LVX was observed in 91.2% (93/102). Using an MIC value of 0.5 μg/ml as a cutoff, resistance to LZD (MIC ≥ 1 μg/ml) was noted in 5.9% (6/102). Although the sensitivity breakpoints are not established for AMC, the MIC values were high (>16 μg/ml) in 97.1% (99/102). Our results demonstrate that LZD may be effective for the treatment of XDR and pre-XDR cases from Pakistan. High resistance rates against LVX in our study suggest the use of this drug with caution for DR-TB cases from this area. Drug susceptibility testing against LVX and AMC may be helpful in complicated and difficult-to-manage cases.


2014 ◽  
Vol 2 (03) ◽  
pp. 80-83
Author(s):  
Ritu Kansal ◽  
Molly Madan ◽  
Richa Kansal ◽  
Vivek Agwan ◽  
Isha Bansal ◽  
...  

Rapid susceptibility testing of Mycobacterium tuberculosis strains is imperative for therapy selection but traditional drug susceptibility tests take weeks or are expensive. Classical drug susceptibility (DST) may take up to 2 to 4 months. The line probe assay is a commercially available line-probe assay that rapidly detects Mycobacterium tuberculosis (MTB) complex, as well as the most common mutations associated with rifampicin and isoniazid. In this study we assessed the sensitivity and specificity of the rapid molecular method in comparison with the conventional method.


2016 ◽  
Vol 60 (8) ◽  
pp. 4956-4960 ◽  
Author(s):  
Alice L. den Hertog ◽  
Sandra Menting ◽  
Richard Pfeltz ◽  
Matthew Warns ◽  
Salman H. Siddiqi ◽  
...  

ABSTRACTFor the past decades, an acidic pH has been used to renderMycobacterium tuberculosissusceptible to pyrazinamide forin vitrotesting. Here, we show that at the standard breakpoint concentration and reduced culture temperatures, pyrazinamide (PZA) is active against tuberculosis (TB) at neutral pH. This finding should help unravel the mechanism of action of PZA and allow drug susceptibility testing (DST) methods to be optimized.


2018 ◽  
Vol 63 (2) ◽  
pp. e01798-18 ◽  
Author(s):  
Söenke Andres ◽  
Matthias I. Gröschel ◽  
Doris Hillemann ◽  
Matthias Merker ◽  
Stefan Niemann ◽  
...  

ABSTRACT Phenotypic drug susceptibility testing (DST) for the two first-line tuberculosis drugs ethambutol and pyrazinamide is known to yield unreliable and inaccurate results. In this prospective study, we propose a diagnostic algorithm combining phenotypic DST with Sanger sequencing to inform clinical decision-making for drug-resistant Mycobacterium tuberculosis complex isolates. Sequencing results were validated using whole-genome sequencing (WGS) of the isolates. Resistance-conferring mutations obtained by pncA sequencing correlated well with phenotypic DST results for pyrazinamide. Phenotypic resistance to ethambutol was only partly explained by mutations in the embB 306 codon. Additional resistance-conferring mutations were found in the embB gene at codons 354, 406, and 497. In several isolates that tested ethambutol susceptibility by phenotypic DST, well-known resistance-conferring embB mutations were determined. Thus, targeted Sanger sequencing beyond the embB 306 codon or WGS together with phenotypic DST should be employed to ensure reliable ethambutol drug susceptibility testing, as a basis for the rational design of multidrug-resistant tuberculosis regimens with or without ethambutol.


2013 ◽  
Vol 58 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Jongseok Lee ◽  
Derek T. Armstrong ◽  
Willy Ssengooba ◽  
Jeong-ae Park ◽  
Yeuni Yu ◽  
...  

ABSTRACTForMycobacterium tuberculosis, phenotypic methods for drug susceptibility testing of second-line drugs are poorly standardized and technically challenging. The Sensititre MYCOTB MIC plate (MYCOTB) is a microtiter plate containing lyophilized antibiotics and configured for determination of MICs to first- and second-line antituberculosis drugs. To evaluate the performance of MYCOTB forM. tuberculosisdrug susceptibility testing using the Middlebrook 7H10 agar proportion method (APM) as the comparator, we conducted a two-site study using archivedM. tuberculosisisolates from Uganda and the Republic of Korea. Thawed isolates were subcultured, and dilutions were inoculated into MYCOTB wells and onto 7H10 agar. MYCOTB results were read at days 7, 10, 14, and 21; APM results were read at 21 days. A total of 222 isolates provided results on both platforms. By APM, 106/222 (47.7%) of isolates were resistant to at least isoniazid and rifampin. Agreement between MYCOTB and APM with respect to susceptibility or resistance was ≥92% for 7 of 12 drugs when a strict definition was used and ≥96% for 10 of 12 drugs when agreement was defined by allowing a ± one-well range of dilutions around the APM critical concentration. For ethambutol, agreement was 80% to 81%. For moxifloxacin, agreement was 83% to 85%; incorporating existing DNA sequencing information for discrepant analysis raised agreement to 91% to 96%. For MYCOTB, the median time to plate interpretation was 10 days and interreader agreement was ≥95% for all drugs. MYCOTB provided reliable results forM. tuberculosissusceptibility testing of first- and second-line drugs except ethambutol, and results were available sooner than those determined by APM.


2011 ◽  
Vol 55 (5) ◽  
pp. 2032-2041 ◽  
Author(s):  
Patricia J. Campbell ◽  
Glenn P. Morlock ◽  
R. David Sikes ◽  
Tracy L. Dalton ◽  
Beverly Metchock ◽  
...  

ABSTRACTThe emergence of multi- and extensively drug-resistant tuberculosis is a significant impediment to the control of this disease because treatment becomes more complex and costly. Reliable and timely drug susceptibility testing is critical to ensure that patients receive effective treatment and become noninfectious. Molecular methods can provide accurate and rapid drug susceptibility results. We used DNA sequencing to detect resistance to the first-line antituberculosis drugs isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB) and the second-line drugs amikacin (AMK), capreomycin (CAP), kanamycin (KAN), ciprofloxacin (CIP), and ofloxacin (OFX). Nine loci were sequenced:rpoB(for resistance to RIF),katGandinhA(INH),pncA(PZA),embB(EMB),gyrA(CIP and OFX), andrrs,eis, andtlyA(KAN, AMK, and CAP). A total of 314 clinicalMycobacterium tuberculosiscomplex isolates representing a variety of antibiotic resistance patterns, genotypes, and geographical origins were analyzed. The molecular data were compared to the phenotypic data and the accuracy values were calculated. Sensitivity and specificity values for the first-line drug loci were 97.1% and 93.6% forrpoB, 85.4% and 100% forkatG, 16.5% and 100% forinhA, 90.6% and 100% forkatGandinhAtogether, 84.6% and 85.8% forpncA, and 78.6% and 93.1% forembB. The values for the second-line drugs were also calculated. The size and scope of this study, in numbers of loci and isolates examined, and the phenotypic diversity of those isolates support the use of DNA sequencing to detect drug resistance in theM. tuberculosiscomplex. Further, the results can be used to design diagnostic tests utilizing other mutation detection technologies.


2020 ◽  
Vol 202 (22) ◽  
Author(s):  
Paras Jain ◽  
Spencer Garing ◽  
Deepshikha Verma ◽  
Rajagopalan Saranathan ◽  
Nicholas Clute-Reinig ◽  
...  

ABSTRACT Phenotypic testing for drug susceptibility of Mycobacterium tuberculosis is critical to basic research and managing the evolving problem of antimicrobial resistance in tuberculosis management, but it remains a specialized technique to which access is severely limited. Here, we report on the development and validation of an improved phage-mediated detection system for M. tuberculosis. We incorporated a nanoluciferase (Nluc) reporter gene cassette into the TM4 mycobacteriophage genome to create phage TM4-nluc. We assessed the performance of this reporter phage in the context of cellular limit of detection and drug susceptibility testing using multiple biosafety level 2 drug-sensitive and -resistant auxotrophs as well as virulent M. tuberculosis strains. For both limit of detection and drug susceptibility testing, we developed a standardized method consisting of a 96-hour cell preculture followed by a 72-hour experimental window for M. tuberculosis detection with or without antibiotic exposure. The cellular limit of detection of M. tuberculosis in a 96-well plate batch culture was ≤102 CFU. Consistent with other phenotypic methods for drug susceptibility testing, we found TM4-nluc to be compatible with antibiotics representing multiple classes and mechanisms of action, including inhibition of core central dogma functions, cell wall homeostasis, metabolic inhibitors, compounds currently in clinical trials (SQ109 and Q203), and susceptibility testing for bedaquiline, pretomanid, and linezolid (components of the BPaL regimen for the treatment of multi- and extensively drug-resistant tuberculosis). Using the same method, we accurately identified rifampin-resistant and multidrug-resistant M. tuberculosis strains. IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis disease, remains a public health crisis on a global scale, and development of new interventions and identification of drug resistance are pillars in the World Health Organization End TB Strategy. Leveraging the tractability of the TM4 mycobacteriophage and the sensitivity of the nanoluciferase reporter enzyme, the present work describes an evolution of phage-mediated detection and drug susceptibility testing of M. tuberculosis, adding a valuable tool in drug discovery and basic biology research. With additional validation, this system may play a role as a quantitative phenotypic reference method and complement to genotypic methods for diagnosis and antibiotic susceptibility testing.


Sign in / Sign up

Export Citation Format

Share Document