scholarly journals Surveillance of Artemisinin Resistance in Plasmodium falciparum in India Using the kelch13 Molecular Marker

2015 ◽  
Vol 59 (5) ◽  
pp. 2548-2553 ◽  
Author(s):  
Neelima Mishra ◽  
Surendra Kumar Prajapati ◽  
Kamlesh Kaitholia ◽  
Ram Suresh Bharti ◽  
Bina Srivastava ◽  
...  

ABSTRACTMalaria treatment in Southeast Asia is threatened with the emergence of artemisinin-resistantPlasmodium falciparum. Genome association studies have strongly linked a locus onP. falciparumchromosome 13 to artemisinin resistance, and recently, mutations in the kelch13 propeller region (Pfk-13) were strongly linked to resistance. To date, this information has not been shown in Indian samples.Pfk-13mutations were assessed in samples from efficacy studies of artemisinin combination treatments in India. Samples were PCR amplified and sequenced from codon 427 to 727. Out of 384 samples, nonsynonymous mutations in the propeller region were found in four patients from the northeastern states, but their presence did not correlate with ACT treatment failures. This is the first report ofPfk-13point mutations from India. Further phenotyping and genotyping studies are required to assess the status of artemisinin resistance in this region.


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Mónica Guerra ◽  
Rita Neres ◽  
Patrícia Salgueiro ◽  
Cristina Mendes ◽  
Nicolas Ndong-Mabale ◽  
...  

ABSTRACT Efforts to control malaria may affect malaria parasite genetic variability and drug resistance, the latter of which is associated with genetic events that promote mechanisms to escape drug action. The worldwide spread of drug resistance has been a major obstacle to controlling Plasmodium falciparum malaria, and thus the study of the origin and spread of associated mutations may provide some insights into the prevention of its emergence. This study reports an analysis of P. falciparum genetic diversity, focusing on antimalarial resistance-associated molecular markers in two socioeconomically different villages in mainland Equatorial Guinea. The present study took place 8 years after a previous one, allowing the analysis of results before and after the introduction of an artemisinin-based combination therapy (ACT), i.e., artesunate plus amodiaquine. Genetic diversity was assessed by analysis of the Pfmsp2 gene and neutral microsatellite loci. Pfdhps and Pfdhfr alleles associated with sulfadoxine-pyrimethamine (SP) resistance and flanking microsatellite loci were investigated, and the prevalences of drug resistance-associated point mutations of the Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps genes were estimated. Further, to monitor the use of ACT, we provide the baseline prevalences of K13 propeller mutations and Pfmdr1 copy numbers. After 8 years, noticeable differences occurred in the distribution of genotypes conferring resistance to chloroquine and SP, and the spread of mutated genotypes differed according to the setting. Regarding artemisinin resistance, although mutations reported as being linked to artemisinin resistance were not present at the time, several single nucleotide polymorphisms (SNPs) were observed in the K13 gene, suggesting that closer monitoring should be maintained to prevent the possible spread of artemisinin resistance in Africa.



2015 ◽  
Vol 59 (11) ◽  
pp. 6952-6959 ◽  
Author(s):  
Zenglei Wang ◽  
Yingna Wang ◽  
Mynthia Cabrera ◽  
Yanmei Zhang ◽  
Bhavna Gupta ◽  
...  

ABSTRACTArtemisinin resistance inPlasmodium falciparumparasites in Southeast Asia is a major concern for malaria control. Its emergence at the China-Myanmar border, where there have been more than 3 decades of artemisinin use, has yet to be investigated. Here, we comprehensively evaluated the potential emergence of artemisinin resistance and antimalarial drug resistance status inP. falciparumusing data and parasites from three previous efficacy studies in this region. These efficacy studies of dihydroartemisinin-piperaquine combination and artesunate monotherapy of uncomplicated falciparum malaria in 248P. falciparumpatients showed an overall 28-day adequate clinical and parasitological response of >95% and day 3 parasite-positive rates of 6.3 to 23.1%. Comparison of the 57 K13 sequences (24 and 33 from day 3 parasite-positive and -negative cases, respectively) identified nine point mutations in 38 (66.7%) samples, of which F446I (49.1%) and an N-terminal NN insertion (86.0%) were predominant. K13 propeller mutations collectively, the F446I mutation alone, and the NN insertion all were significantly associated with day 3 parasite positivity. Increased ring-stage survival determined using the ring-stage survival assay (RSA) was highly associated with the K13 mutant genotype. Day 3 parasite-positive isolates had ∼10 times higher ring survival rates than day 3 parasite-negative isolates. Divergent K13 mutations suggested independent evolution of artemisinin resistance. Taken together, this study confirmed multidrug resistance and emergence of artemisinin resistance inP. falciparumat the China-Myanmar border. RSA and K13 mutations are useful phenotypic and molecular markers for monitoring artemisinin resistance.



2018 ◽  
Vol 62 (4) ◽  
Author(s):  
Theerayot Kobasa ◽  
Eldin Talundzic ◽  
Rungniran Sug-aram ◽  
Patcharida Boondat ◽  
Ira F. Goldman ◽  
...  

ABSTRACT Artemisinin-based combination therapy (ACT) is the most effective and widely used treatment for uncomplicated Plasmodium falciparum malaria and is a cornerstone for malaria control and prevention globally. Resistance to artemisinin derivatives has been confirmed in the Greater Mekong Subregion (GMS) and manifests as slow parasite clearance in patients and reduced ring stage susceptibility to artemisinins in survival assays. The P. falciparum kelch13 gene mutations associated with artemisinin-resistant parasites are now widespread in the GMS. We genotyped 277 samples collected during an observational study from 2012 to 2016 from eight provinces in Thailand to identify P. falciparum kelch13 mutations. The results were combined with previously reported genotyping results from Thailand to construct a map illustrating the evolution of P. falciparum kelch13 mutations from 2007 to 2016 in that country. Different mutant alleles were found in strains with different geographical origins. The artemisinin resistance-conferring Y493H and R539T mutations were detected mainly in eastern Thailand (bordering Cambodia), while P574L was found only in western Thailand and R561H only in northwestern Thailand. The C580Y mutation was found across the entire country and was nearing fixation along the Thai-Cambodia border. Overall, the prevalence of artemisinin resistance mutations increased over the last 10 years across Thailand, especially along the Thai-Cambodia border. Molecular surveillance and therapeutic efficacy monitoring should be intensified in the region to further assess the extent and spread of artemisinin resistance.



2014 ◽  
Vol 58 (12) ◽  
pp. 7049-7055 ◽  
Author(s):  
Kamala Thriemer ◽  
Nguyen Van Hong ◽  
Anna Rosanas-Urgell ◽  
Bui Quang Phuc ◽  
Do Manh Ha ◽  
...  

ABSTRACTReduced susceptibility ofPlasmodium falciparumtoward artemisinin derivatives has been reported from the Thai-Cambodian and Thai-Myanmar borders. Following increasing reports from central Vietnam of delayed parasite clearance after treatment with dihydroartemisinin-piperaquine (DHA-PPQ), the current first-line treatment, we carried out a study on the efficacy of this treatment. Between September 2012 and February 2013, we conducted a 42-dayin vivoandin vitroefficacy study in Quang Nam Province. Treatment was directly observed, and blood samples were collected twice daily until parasite clearance. In addition, genotyping, quantitative PCR (qPCR), andin vitrosensitivity testing of isolates was performed. The primary endpoints were parasite clearance rate and time. The secondary endpoints included PCR-corrected and uncorrected cure rates, qPCR clearance profiles,in vitrosensitivity results (for chloroquine, dihydroartemisinin, and piperaquine), and genotyping for mutations in the Kelch 13 propeller domain. Out of 672 screened patients, 95 were recruited and 89 available for primary endpoint analyses. The median parasite clearance time (PCT) was 61.7 h (interquartile range [IQR], 47.6 to 83.2 h), and the median parasite clearance rate had a slope half-life of 6.2 h (IQR, 4.4 to 7.5 h). The PCR-corrected efficacy rates were estimated at 100% at day 28 and 97.7% (95% confidence interval, 91.2% to 99.4%) at day 42. At day 3, theP. falciparumprevalence by qPCR was 2.5 times higher than that by microscopy. The 50% inhibitory concentrations (IC50s) of isolates with delayed clearance times (≥72 h) were significantly higher than those with normal clearance times for all three drugs. Delayed parasite clearance (PCT, ≥72 h) was significantly higher among day 0 samples carrying the 543 mutant allele (47.8%) than those carrying the wild-type allele (1.8%;P= 0.048). In central Vietnam, the efficacy of DHA-PPQ is still satisfactory, but the parasite clearance time and rate are indicative of emerging artemisinin resistance. (This study has been registered at ClinicalTrials.gov under registration no. NCT01775592.)



2015 ◽  
Vol 59 (5) ◽  
pp. 2554-2559 ◽  
Author(s):  
Jun Feng ◽  
Daili Zhou ◽  
Yingxue Lin ◽  
Huihui Xiao ◽  
He Yan ◽  
...  

ABSTRACTMalaria in the China-Myanmar border region is still severe; local transmission of both falciparum and vivax malaria persists, and there is a risk of geographically expanding antimalarial resistance. In this research, thepfmdr1,pfcrt,pvmdr1, and K13-propeller genotypes were determined in 26Plasmodium falciparumand 64Plasmodium vivaxisolates from Yingjiang county of Yunnan province. Thepfmdr1(11.5%),pfcrt(34.6%), andpvmdr1(3.1%) mutations were prevalent at the China-Myanmar border. The indigenous samples exhibited prevalences of 14.3%, 28.6%, and 14.3% forpfmdr1N86Y,pfcrtK76T, andpfcrtM74I, respectively, whereas the samples from Myanmar showed prevalences of 10.5%, 21.1%, and 5.3%, respectively. The most prevalent genotypes ofpfmdr1andpfcrtwere Y86Y184and M74N75T76, respectively. Nopvmdr1mutation occurred in the indigenous samples but was observed in two cases coming from Myanmar. In addition, we are the first to report on 10 patients (38.5%) with five different K13 point mutations. The F446I allele is predominant (19.2%), and its prevalence was 28.6% in the indigenous samples of Yingjiang county and 15.8% in samples from Myanmar. The present data might be helpful for enrichment of the molecular surveillance of antimalarial resistance and useful for developing and updating guidance for the use of antimalarials in this region.



2017 ◽  
Vol 61 (3) ◽  
Author(s):  
Eldin Talundzic ◽  
Yaye D. Ndiaye ◽  
Awa B. Deme ◽  
Christian Olsen ◽  
Dhruviben S. Patel ◽  
...  

ABSTRACT The emergence of Plasmodium falciparum resistance to artemisinin in Southeast Asia threatens malaria control and elimination activities worldwide. Multiple polymorphisms in the P. falciparum kelch gene found in chromosome 13 (Pfk13) have been associated with artemisinin resistance. Surveillance of potential drug resistance loci within a population that may emerge under increasing drug pressure is an important public health activity. In this context, P. falciparum infections from an observational surveillance study in Senegal were genotyped using targeted amplicon deep sequencing (TADS) for Pfk13 polymorphisms. The results were compared to previously reported Pfk13 polymorphisms from around the world. A total of 22 Pfk13 propeller domain polymorphisms were identified in this study, of which 12 have previously not been reported. Interestingly, of the 10 polymorphisms identified in the present study that were also previously reported, all had a different amino acid substitution at these codon positions. Most of the polymorphisms were present at low frequencies and were confined to single isolates, suggesting they are likely transient polymorphisms that are part of naturally evolving parasite populations. The results of this study underscore the need to identify potential drug resistance loci existing within a population, which may emerge under increasing drug pressure.



2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Stella M. Chenet ◽  
Sheila Akinyi Okoth ◽  
Julia Kelley ◽  
Naomi Lucchi ◽  
Curtis S. Huber ◽  
...  

ABSTRACT In Suriname, an artesunate monotherapy therapeutic efficacy trial was recently conducted to evaluate partial artemisinin resistance emerging in Plasmodium falciparum. We genotyped the PfK13 propeller domain of P. falciparum in 40 samples as well as other mutations proposed to be associated with artemisinin-resistant mutants. We did not find any mutations previously associated with artemisinin resistance in Southeast Asia, but we found fixed resistance mutations for chloroquine (CQ) and sulfadoxine-pyrimethamine. Additionally, the PfCRT C350R mutation, associated with reversal of CQ resistance and piperaquine-selective pressure, was present in 62% of the samples. Our results from neutral microsatellite data also confirmed a high parasite gene flow in the Guiana Shield. Although recruiting participants for therapeutic efficacy studies is challenging in areas where malaria endemicity is very low due to the low number of malaria cases reported, conducting these studies along with molecular surveillance remains essential for the monitoring of artemisinin-resistant alleles and for the characterization of the population structure of P. falciparum in areas targeted for malaria elimination.



2021 ◽  
Author(s):  
Barbara H. Stokes ◽  
Kelly Rubiano ◽  
Satish K. Dhingra ◽  
Sachel Mok ◽  
Judith Straimer ◽  
...  

AbstractThe emergence of artemisinin (ART) resistance in Plasmodium falciparum parasites has led to increasing rates of treatment failure with first-line ART-based combination therapies (ACTs) in Southeast Asia. In this region, select mutations in K13 can result in delayed parasite clearance rates in vivo and enhanced survival in the ring-stage survival assay (RSA) in vitro. Our genotyping of 3,299 P. falciparum isolates across 11 sub-Saharan countries reveals the continuing dominance of wild-type K13 and confirms the emergence of a K13 R561H variant in Rwanda. Using gene editing, we provide definitive evidence that this mutation, along with M579I and C580Y, can confer variable degrees of in vitro ART resistance in African P. falciparum strains. C580Y and M579I were both associated with substantial fitness costs in African parasites, which may counter-select against their dissemination in high-transmission settings. We also report the impact of multiple K13 mutations, including the predominant variant C580Y, on RSA survival rates and fitness in multiple Southeast Asian strains. No change in ART susceptibility was observed upon editing point mutations in ferrodoxin or mdr2, earlier associated with ART resistance in Southeast Asia. These data point to the lack of an evident biological barrier to mutant K13 mediating ART resistance in Africa, while identifying their detrimental impact on parasite growth.



F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 628
Author(s):  
Harriet Natabona Mukhongo ◽  
Johnson Kang'ethe Kinyua ◽  
Yishak Gebrekidan Weldemichael ◽  
Remmy Wekesa Kasili

Background: Antimalarial drug resistance is a major challenge hampering malaria control and elimination. Plasmodium falciparum, the leading causative parasite species, has developed resistance to basically all antimalarials. Continued surveillance of drug resistance using genetic markers provides important molecular data for treatment policies. This study sought to verify the genetic mechanism of resistance to sulfadoxine-pyrimethamine and assess the occurrence of point mutations associated with artemisinin resistance in P. falciparum clinical isolates from Eritrea. Methods: Nineteen dried blood spot samples were collected from patients visiting Adi Quala, Keren and Gash Barka Hospitals, Eritrea. The patients were followed up after receiving treatment with first line artesunate-amodiaquine. Nested polymerase chain reaction and Sanger sequencing techniques were employed to genotype point mutations in the P. falciparum bifunctional dihydrofolate reductase-thymidylate synthase (Pfdhfr, PF3D7_0417200), dihydropteorate synthase (Pfdhps, PF3D7_0810800) and kelch 13 (PfK13, PF3D7_1343700) genes. Results: Eight of nineteen (42%) of the dried blood spot samples were successful for PCR-amplification. Data analyses of the PCR-positive isolates revealed the following point mutations: Pfdhfr N51I in four isolates, C59R in one isolate, S108N in four isolates, a rare non-synonymous substitution V45A in four isolates and Pfdhps K540E in four isolates. No PfK13 point mutations were reported. Conclusions: Pfdhfr C59R and Pfdhps K540E point mutations are reliable markers for the sulfadoxine-pyrimethamine quintuple mutant haplotype combination. These findings highlight first reports in Eritrea, which verify the underlying genetic mechanism of antifolate resistance. Continuous monitoring of the PfK13 marker is recommended.



Author(s):  
Achaporn Yipsirimetee ◽  
Pornpawee Chiewpoo ◽  
Rupam Tripura ◽  
Dysoley Lek ◽  
Nicholas P. J. Day ◽  
...  

Artemisinin resistance in Plasmodium falciparum has emerged and spread widely in the Greater Mekong Subregion threatening current first line artemisinin combination treatments. New antimalarial drugs are needed urgently. Cipargamin (KAE609) and ganaplacide (KAF156) are promising novel antimalarial compounds in advanced stages of development. Both compounds have potent asexual blood stage activities, inhibit P. falciparum gametocytogenesis and reduce oocyst development in anopheline mosquitoes. In this study, we compared the asexual and sexual stage activities of cipargamin, ganaplacide and artesunate in artemisinin resistant P. falciparum isolates (N=7, K13 mutation; C580Y, G449A and R539T) from Thailand and Cambodia. Asexual blood stage antimalarial activity was evaluated in a SYBR-green I based 72h in vitro assay, and the effects on male and female mature stage V gametocytes were assessed in the P. falciparum dual gamete formation assay. Ganaplacide had higher activities when compared to cipargamin and artesunate, with a mean (SD) IC50 against asexual stages of 5.5 (1.1) nM, 7.8 (3.9) nM for male gametocytes and 57.9 (59.6) nM for female gametocytes. Cipargamin had a similar potency against male and female gametocytes, with a mean (SD) IC50 of 123.1 (80.2) nM for male gametocytes, 88.5 (52.7) nM for female gametocytes and 2.4 (0.6) nM for asexual stages. Both cipargamin and ganaplacide showed significant transmission-blocking activities against artemisinin resistant P. falciparum in vitro .



Sign in / Sign up

Export Citation Format

Share Document