scholarly journals Resistance to Linezolid Caused by Modifications at Its Binding Site on the Ribosome

2011 ◽  
Vol 56 (2) ◽  
pp. 603-612 ◽  
Author(s):  
Katherine S. Long ◽  
Birte Vester

ABSTRACTLinezolid is an oxazolidinone antibiotic in clinical use for the treatment of serious infections of resistant Gram-positive bacteria. It inhibits protein synthesis by binding to the peptidyl transferase center on the ribosome. Almost all known resistance mechanisms involve small alterations to the linezolid binding site, so this review will therefore focus on the various changes that can adversely affect drug binding and confer resistance. High-resolution structures of linezolid bound to the 50S ribosomal subunit show that it binds in a deep cleft that is surrounded by 23S rRNA nucleotides. Mutation of 23S rRNA has for some time been established as a linezolid resistance mechanism. Although ribosomal proteins L3 and L4 are located further away from the bound drug, mutations in specific regions of these proteins are increasingly being associated with linezolid resistance. However, very little evidence has been presented to confirm this. Furthermore, recent findings on the Cfr methyltransferase underscore the modification of 23S rRNA as a highly effective and transferable form of linezolid resistance. On a positive note, detailed knowledge of the linezolid binding site has facilitated the design of a new generation of oxazolidinones that show improved properties against the known resistance mechanisms.

2016 ◽  
Vol 60 (5) ◽  
pp. 3007-3015 ◽  
Author(s):  
Anna C. Shore ◽  
Alexandros Lazaris ◽  
Peter M. Kinnevey ◽  
Orla M. Brennan ◽  
Gráinne I. Brennan ◽  
...  

ABSTRACTLinezolid is often the drug of last resort for serious methicillin-resistantStaphylococcus aureus(MRSA) infections. Linezolid resistance is mediated by mutations in 23S rRNA and genes for ribosomal proteins;cfr, encoding phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A (PhLOPSA) resistance; its homologuecfr(B); oroptrA, conferring oxazolidinone and phenicol resistance. Linezolid resistance is rare inS. aureus, andcfris even rarer. This study investigated the clonality and linezolid resistance mechanisms of two MRSA isolates from patients in separate Irish hospitals. Isolates were subjected tocfrPCR, PhLOPSAsusceptibility testing, 23S rRNA PCR and sequencing, DNA microarray profiling,spatyping, pulsed-field gel electrophoresis (PFGE), plasmid curing, and conjugative transfer. Whole-genome sequencing was used for single-nucleotide variant (SNV) analysis, multilocus sequence typing, L protein mutation identification,cfrplasmid sequence analysis, andoptrAandcfr(B) detection. Isolates M12/0145 and M13/0401 exhibited linezolid MICs of 64 and 16 mg/liter, respectively, and harbored identical 23S rRNA and L22 mutations, but M12/0145 exhibited the mutation in 2/6 23S rRNA alleles, compared to 1/5 in M13/0401. Both isolates were sequence type 22 MRSA staphylococcal cassette chromosomemectype IV (ST22-MRSA-IV)/spatype t032 isolates, harboredcfr, exhibited the PhLOPSAphenotype, and lackedoptrAandcfr(B). They differed by five PFGE bands and 603 SNVs. Isolate M12/0145 harboredcfrandfexAon a 41-kb conjugative pSCFS3-type plasmid, whereas M13/0401 harboredcfrandlsa(B) on a novel 27-kb plasmid. This is the first report ofcfrin the pandemic ST22-MRSA-IV clone. Differentcfrplasmids and mutations associated with linezolid resistance in genotypically distinct ST22-MRSA-IV isolates highlight that prudent management of linezolid use is essential.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 219
Author(s):  
Lucia Mališová ◽  
Vladislav Jakubů ◽  
Katarína Pomorská ◽  
Martin Musílek ◽  
Helena Žemličková

The aim of this study was to map and investigate linezolid resistance mechanisms in linezolid-resistant enterococci in the Czech Republic from 2009 to 2019. Altogether, 1442 isolates of Enterococcus faecium and Enterococcus faecalis were examined in the National Reference Laboratory for Antibiotics. Among them, 8% of isolates (n = 115) were resistant to linezolid (E. faecium/n = 106, E. faecalis/n = 9). Only three strains of E. faecium were resistant to tigecycline, 72.6% of isolates were resistant to vancomycin. One isolate of E. faecium harbored the cfr gene. The majority (87%, n = 11) of E. faecium strains were resistant to linezolid because of the mutation G2576T in the domain V of the 23S rRNA. This mutation was detected also in two strains of E. faecalis. The presence of the optrA gene was the dominant mechanism of linezolid resistance in E. faecalis isolates. None of enterococci contained cfrB, poxtA genes, or any amino acid mutation in genes encoding ribosomal proteins. No mechanism of resistance was identified in 4 out of 106 E. faecium linezolid resistant isolates in this study. Seventeen sequence types (STs) including four novel STs were identified in this work. Clonal complex CC17 was found in all E. faecium isolates.


2001 ◽  
Vol 183 (23) ◽  
pp. 6898-6907 ◽  
Author(s):  
Georgina Garza-Ramos ◽  
Liqun Xiong ◽  
Ping Zhong ◽  
Alexander Mankin

ABSTRACT Macrolides represent a clinically important class of antibiotics that block protein synthesis by interacting with the large ribosomal subunit. The macrolide binding site is composed primarily of rRNA. However, the mode of interaction of macrolides with rRNA and the exact location of the drug binding site have yet to be described. A new class of macrolide antibiotics, known as ketolides, show improved activity against organisms that have developed resistance to previously used macrolides. The biochemical reasons for increased potency of ketolides remain unknown. Here we describe the first mutation that confers resistance to ketolide antibiotics while leaving cells sensitive to other types of macrolides. A transition of U to C at position 2609 of 23S rRNA rendered E. coli cells resistant to two different types of ketolides, telithromycin and ABT-773, but increased slightly the sensitivity to erythromycin, azithromycin, and a cladinose-containing derivative of telithromycin. Ribosomes isolated from the mutant cells had reduced affinity for ketolides, while their affinity for erythromycin was not diminished. Possible direct interaction of ketolides with position 2609 in 23S rRNA was further confirmed by RNA footprinting. The newly isolated ketolide-resistance mutation, as well as 23S rRNA positions shown previously to be involved in interaction with macrolide antibiotics, have been modeled in the crystallographic structure of the large ribosomal subunit. The location of the macrolide binding site in the nascent peptide exit tunnel at some distance from the peptidyl transferase center agrees with the proposed model of macrolide inhibitory action and explains the dominant nature of macrolide resistance mutations. Spatial separation of the rRNA residues involved in universal contacts with macrolides from those believed to participate in structure-specific interactions with ketolides provides the structural basis for the improved activity of the broader spectrum group of macrolide antibiotics.


2012 ◽  
Vol 57 (3) ◽  
pp. 1173-1179 ◽  
Author(s):  
Jacqueline LaMarre ◽  
Rodrigo E. Mendes ◽  
Teresa Szal ◽  
Stefan Schwarz ◽  
Ronald N. Jones ◽  
...  

ABSTRACTThe clinicalStaphylococcus epidermidisisolate 426-3147L exhibits an unusually high resistance to linezolid that exceeds 256 μg/ml. The presence of thecfrgene, encoding the RNA methyltransferase targeting an rRNA nucleotide located in the linezolid binding site, accounts for a significant fraction of resistance. The association ofcfrwith a multicopy plasmid is one of the factors that contribute to its elevated expression. Mapping of thecfrtranscription start sites identified the nativecfrpromoter. Furthermore, analysis of thecfrtranscripts inStaphylococcus epidermidis426-3147L showed that some of them originate from the upstream plasmid-derived promoters whose activity contributes to efficientcfrtranscription. The genetic environment of thecfrgene and its idiosyncratic transcription pattern result in increased activity of Cfr methyltransferase, leading to a high fraction of the ribosomes being methylated at A2503 of the 23S rRNA. Curing of theStaphylococcus epidermidis426-3147L isolate from thecfr-containing plasmid reduced the linezolid MIC to 64 μg/ml, indicating that other determinants contribute to resistance. Nucleotide sequence analysis revealed the presence of the C2534T mutation in two of the six 23S rRNA gene alleles as well as the presence of mutations in the genes of ribosomal proteins L3 and L4, which were previously implicated in linezolid resistance. Thus, the combination of resistance mechanisms operating through alteration of the drug target site appears to cause an unusually high level of linezolid resistance in the isolate.


2021 ◽  
Vol 9 (5) ◽  
pp. 1077
Author(s):  
Ji-Hyun Choi ◽  
Dong Chan Moon ◽  
Abraham Fikru Mechesso ◽  
Hee Young Kang ◽  
Su-Jeong Kim ◽  
...  

We identified 1218 Campylobacter coli isolates from fecal and carcass samples of pigs (n = 643) and chickens (n = 575) between 2010 and 2018. About 99% of the isolates were resistant to at least one antimicrobial agent. The isolates exhibited high resistance rates (>75%) to ciprofloxacin, nalidixic acid, and tetracycline. Azithromycin and erythromycin resistance rates were the highest in isolates from pigs (39.7% and 39.2%, respectively) compared to those of chickens (15.8% and 16.3%, respectively). Additionally, a low-to-moderate proportion of the isolates were resistant to florfenicol, gentamicin, clindamycin, and telithromycin. Multidrug resistance (MDR) was found in 83.1% of the isolates, and profiles of MDR usually included ciprofloxacin, nalidixic acid, and tetracycline. We found point mutation (A2075G) in domain V of the 23S rRNA gene in the majority of erythromycin-resistant isolates. Multilocus sequence typing of 137 erythromycin-resistant C. coli isolates revealed 37 previously reported sequence types (STs) and 8 novel STs. M192I, A103VI, and G74A substitutions were frequently noted in the ribosomal proteins L4 or L22. Further, we identified a considerable proportion (>90%) of erythromycin-resistant isolates carrying virulence factor genes: flaA, cadF, ceuE, and VirB. The prudent use of antimicrobials and regular microbiological investigation in food animals will be vital in limiting the public health hazards of C. coli in Korea.


1972 ◽  
Vol 130 (1) ◽  
pp. 103-110 ◽  
Author(s):  
L. P. Visentin ◽  
C. Chow ◽  
A. T. Matheson ◽  
M. Yaguchi ◽  
F. Rollin

1. The 30S ribosomal subunit of the extreme halophile Halobacterium cutirubrum is unstable and loses 75% of its ribosomal protein when the 70S ribosome is dissociated into the two subunits. A stable 30S subunit is obtained if the dissociation of the 70S particle is carried out in the presence of the soluble fraction. 2. A fractionation procedure was developed for the selective removal of groups of proteins from the 30S and 50S subunits. When the ribosomes, which are stable in 4m-K+ and 0.1m-Mg2+, were extracted with low-ionic-strength buffer 75–80% of the 30S proteins and 60–65% of the 50S proteins as well as the 5S rRNA were released. The proteins in this fraction are the most acidic of the H. cutirubrum ribosomal proteins. Further extraction with Li+–EDTA releases additional protein, leaving a core particle containing either 16S rRNA or 23S rRNA and about 5% of the total ribosomal protein. The amino acid composition, mobility on polyacrylamide gels at pH4.5 and 8.7, and the molecular-weight distribution of the various protein fractions were determined. 3. The s values of the rRNA are 5S, 16S and 23S. The C+G contents of the 16S and 23S rRNA were 56.1 and 58.8% respectively and these are higher than C+G contents of the corresponding Escherichia coli rRNA (53.8 and 54.1%).


2021 ◽  
Author(s):  
Haina Huang ◽  
Melissa Parker ◽  
Katrin Karbstein

AbstractRibosome assembly is an intricate process, which in eukaryotes is promoted by a large machinery comprised of over 200 assembly factors (AF) that enable the modification, folding, and processing of the ribosomal RNA (rRNA) and the binding of the 79 ribosomal proteins. While some early assembly steps occur via parallel pathways, the process overall is highly hierarchical, which allows for the integration of maturation steps with quality control processes that ensure only fully and correctly assembled subunits are released into the translating pool. How exactly this hierarchy is established, in particular given that there are many instances of RNA substrate “handover” from one highly related AF to another remains to be determined. Here we have investigated the role of Tsr3, which installs a universally conserved modification in the P-site of the small ribosomal subunit late in assembly. Our data demonstrate that Tsr3 separates the activities of the Rio kinases, Rio2 and Rio1, with whom it shares a binding site. By binding after Rio2 dissociation, Tsr3 prevents rebinding of Rio2, promoting forward assembly. After rRNA modification is complete, Tsr3 dissociates, thereby allowing for recruitment of Rio1. Inactive Tsr3 blocks Rio1, which can be rescued using mutants that bypass the requirement for Rio1 activity. Finally, yeast strains lacking Tsr3 randomize the binding of the two kinases, leading to the release of immature ribosomes into the translating pool. These data demonstrate a role for Tsr3 and its modification activity in establishing a hierarchy for the function of the Rio kinases.


1973 ◽  
Vol 133 (4) ◽  
pp. 739-747 ◽  
Author(s):  
A. Robinson ◽  
J. Sykes

1. The behaviour of the large ribosomal subunit from Rhodopseudomonas spheroides (45S) has been compared with the 50S ribosome from Escherichia coli M.R.E. 600 (and E. coli M.R.E. 162) during unfolding by removal of Mg2+ and detachment of ribosomal proteins by high univalent cation concentrations. The extent to which these processes are reversible with these ribosomes has also been examined. 2. The R. spheroides 45S ribosome unfolds relatively slowly but then gives rise directly to two ribonucleoprotein particles (16.6S and 13.7S); the former contains the intact primary structure of the 16.25S rRNA species and the latter the 15.00S rRNA species of the original ribosome. No detectable protein loss occurs during unfolding. The E. coli ribosome unfolds via a series of discrete intermediates to a single, unfolded ribonucleoprotein unit (19.1S) containing the 23S rRNA and all the protein of the original ribosome. 3. The two unfolded R. spheroides ribonucleoproteins did not recombine when the original conditions were restored but each simply assumed a more compact configuration. Similar treatments reversed the unfolding of the E. coli 50S ribosomes; replacement of Mg2+ caused the refolding of the initial products of unfolding and in the presence of Ni2+ the completely unfolded species (19.1S) again sedimented at the same rate as the original ribosomes (44S). 4. Ribosomal proteins (25%) were dissociated from R. spheroides 45S ribosomes by dialysis against a solution with a Na+/Mg2+ ratio of 250:1. During this process two core particles were formed (21.2S and 14.2S) and the primary structures of the two original rRNA species were conserved. This dissociation was not reversed. With E. coli 50S approximately 15% of the original ribosomal protein was dissociated, a single 37.6S core particle was formed, the 23S rRNA remained intact and the ribosomal proteins would reassociate with the core particle to give a 50S ribosome. 5. The ribonuclease activities in R. spheroides 45S and E. coli M.R.E. 600 and E. coli M.R.E. 162 50S ribosomes are compared. 6. The observations concerning unfolding and dissociation are consistent with previous reports showing the unusual rRNA complement of the mature R. spheroides 45S ribosome and show the dependence of these events upon the rRNA and the importance of protein–protein interactions in the structure of the R. spheroides ribosome.


Parasitology ◽  
1997 ◽  
Vol 114 (7) ◽  
pp. 125-136 ◽  
Author(s):  
S. A. WARD ◽  
P. G. BRAY ◽  
S. R. HAWLEY

Despite considerable therapeutic success with the antimalarial 4-aminoquinolines such as chloroquine, there is serious doubt about the future of this drug class due mainly to the development and spread of parasite resistance throughout endemic areas. In this article we review the possible biochemical and molecular basis of resistance. Based on our current understanding we have considered the possibility of developing strategies which may allow the aminoquinolines to once again be used effectively against P. falciparum. Our conclusions are that drug resistance is the result of a reduced rate of drug uptake which in turn reduces the amount of drug available to bind the target. The basis for this reduced accumulation could be an altered pH gradient making the food vacuole more alkaline or the parasite cytosol more acidic, an efflux pump removing drug directly from the membrane or any other process which will reduce the rate of drug uptake. Central to the effectiveness of this resistance mechanism is the transient availability of a high affinity, low capacity drug binding site (possibly haem) within the parasite. Resistance reversers such as verapamil influence the apparent Ka for this drug binding phenomenon via an increased drug uptake rate. We demonstrate that by chemical modification of the aminoquinolines, producing predictable alterations in their physicochemical properties, that it is possible to minimise the verapamil sensitive component of resistance and reduce significantly cross-resistance patterns without loss in absolute activity. Based on these views we suggest that the aminoquinoline antimalarials still have a role to play in the cheap, safe and effective chemotherapy of falciparum malaria.


2017 ◽  
Vol 61 (3) ◽  
Author(s):  
Ghislaine Descours ◽  
Christophe Ginevra ◽  
Nathalie Jacotin ◽  
Françoise Forey ◽  
Joëlle Chastang ◽  
...  

ABSTRACT Monitoring the emergence of antibiotic resistance is a recent issue in the treatment of Legionnaires' disease. Macrolides are recommended as first-line therapy, but resistance mechanisms have not been studied in Legionella species. Our aim was to determine the molecular basis of macrolide resistance in L. pneumophila. Twelve independent lineages from a common susceptible L. pneumophila ancestral strain were propagated under conditions of erythromycin or azithromycin pressure to produce high-level macrolide resistance. Whole-genome sequencing was performed on 12 selected clones, and we investigated mutations common to all lineages. We reconstructed the dynamics of mutation for each lineage and demonstrated their involvement in decreased susceptibility to macrolides. The resistant mutants were produced in a limited number of passages to obtain a 4,096-fold increase in erythromycin MICs. Mutations affected highly conserved 5-amino-acid regions of L4 and L22 ribosomal proteins and of domain V of 23S rRNA (G2057, A2058, A2059, and C2611 nucleotides). The early mechanisms mainly affected L4 and L22 proteins and induced a 32-fold increase in the MICs of the selector drug. Additional mutations related to 23S rRNA mostly occurred later and were responsible for a major increase of macrolide MICs, depending on the mutated nucleotide, the substitution, and the number of mutated genes among the three rrl copies. The major mechanisms of the decreased susceptibility to macrolides in L. pneumophila and their dynamics were determined. The results showed that macrolide resistance could be easily selected in L. pneumophila and warrant further investigations in both clinical and environmental settings.


Sign in / Sign up

Export Citation Format

Share Document