scholarly journals Potent activity of 2'-beta-fluoro-2',3'-dideoxyadenosine against human immunodeficiency virus type 1 infection in hu-PBL-SCID mice.

1996 ◽  
Vol 40 (10) ◽  
pp. 2369-2374 ◽  
Author(s):  
K Ruxrungtham ◽  
E Boone ◽  
H Ford ◽  
J S Driscoll ◽  
R T Davey ◽  
...  

A new antiretroviral agent, 2'-beta-fluoro-2',3'-dideoxyadenosine (FddA), is an acid-stable compound whose triphosphate form is a potent reverse transcriptase inhibitor with in vitro anti-human immunodeficiency virus (HIV) activity and a favorable pharmacokinetic profile. Severe combined immunodeficiency (SCID) mice reconstituted with human peripheral blood leukocytes (hu-PBL-SCID mice) provide a useful small-animal model for HIV research. In the present study we utilized this experimental system for the in vivo evaluation of the anti-HIV activity of this new compound when administered prior to infection. Initial studies revealed that, following a challenge with 50 100% tissue culture infective doses of HIV type 1 lymphadenopathy-associated virus, 39 of 42 (93%) control mice developed HIV infection, as evidenced by positive coculture or positive PCR. Administration of zidovudine decreased the infection rate to 5 of 16 (31%), while administration of FddA decreased the infection rate to 0 of 44 (0%). In follow-up controlled studies, the anti-HIV activity of FddA was confirmed, with 18 of 20 control mice showing evidence of HIV infection, compared with 4 of 20 FddA-treated mice. In addition to having direct anti-HIV effects, FddA was found to have a protective effect on human CD4+ T cells in the face of HIV infection. Mice treated with FddA were found to have a significantly higher percentage of CD4+ T cells than controls (10.3% +/- 3.4% versus 0.27% +/- 0.21%; P = 0.01). Thus, FddA, with its potent anti-HIV activity in vivo, high oral bioavailability, long intracellular half-life, and ability to preserve CD4+ cells in the presence of HIV, appears to be a promising agent for clinical investigation.

2006 ◽  
Vol 80 (15) ◽  
pp. 7645-7657 ◽  
Author(s):  
Keyang Chen ◽  
Jialing Huang ◽  
Chune Zhang ◽  
Sophia Huang ◽  
Giuseppe Nunnari ◽  
...  

ABSTRACT The interferon (IFN) system, including various IFNs and IFN-inducible gene products, is well known for its potent innate immunity against wide-range viruses. Recently, a family of cytidine deaminases, functioning as another innate immunity against retroviral infection, has been identified. However, its regulation remains largely unknown. In this report, we demonstrate that through a regular IFN-α/β signal transduction pathway, IFN-α can significantly enhance the expression of apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) in human primary resting but not activated CD4 T cells and the amounts of APOBEC3G associated with a low molecular mass. Interestingly, short-time treatments of newly infected resting CD4 T cells with IFN-α will significantly inactivate human immunodeficiency virus type 1 (HIV-1) at its early stage. This inhibition can be counteracted by APOBEC3G-specific short interfering RNA, indicating that IFN-α-induced APOBEC3G plays a key role in mediating this anti-HIV-1 process. Our data suggest that APOBEC3G is also a member of the IFN system, at least in resting CD4 T cells. Given that the IFN-α/APOBEC3G pathway has potent anti-HIV-1 capability in resting CD4 T cells, augmentation of this innate immunity barrier could prevent residual HIV-1 replication in its native reservoir in the post-highly active antiretroviral therapy era.


2014 ◽  
Vol 22 (01) ◽  
pp. 73-88
Author(s):  
JIE LOU ◽  
HONGMEI ZHANG ◽  
QUANBI ZHAO ◽  
LINGJIE LIAO ◽  
LITAO HAN

Analysis of changes in viral load after initiation of treatment with potent antiretroviral agents has provided substantial insights into the dynamics of human immunodeficiency virus type 1. We built a simple mathematics model to study the effect of latent-infected resting memory CD4+ T cells during the HIV infection and highly active anti-retroviral therapy (HAART). Through analysis of eight patients who received HAART in China, we have an insight into the mechanisms of resting memory CD4+ T cells in HIV infection. Simulations show that new infections still exist in the eight patients even under the HAART. Also, because of the long half-life of resting infected memory CD4+ T cells, removal of HIV from patient could take considerably longer time or be unattainable.


2005 ◽  
Vol 79 (20) ◽  
pp. 12674-12680 ◽  
Author(s):  
Gabriela Bleiber ◽  
Margaret May ◽  
Raquel Martinez ◽  
Pascal Meylan ◽  
Jürg Ott ◽  
...  

ABSTRACT Humans differ substantially with respect to susceptibility to human immunodeficiency virus type 1 (HIV-1). We evaluated variants of nine host genes participating in the viral life cycle for their role in modulating HIV-1 infection. Alleles were assessed ex vivo for their impact on viral replication in purified CD4 T cells from healthy blood donors (n = 128). Thereafter, candidate alleles were assessed in vivo in a cohort of HIV-1-infected individuals (n = 851) not receiving potent antiretroviral therapy. As a benchmark test, we tested 12 previously reported host genetic variants influencing HIV-1 infection as well as single nucleotide polymorphisms in the nine candidate genes. This led to the proposition of three alleles of PML, TSG101, and PPIA as potentially associated with differences in progression of HIV-1 disease. In a model considering the combined effects of new and previously reported gene variants, we estimated that their effect might be responsible for lengthening or shortening by up to 2.8 years the period from 500 CD4 T cells/μl to <200 CD4 T cells/μl.


2003 ◽  
Vol 77 (19) ◽  
pp. 10376-10382 ◽  
Author(s):  
Yuntao Wu ◽  
Jon W. Marsh

ABSTRACT Replication of human immunodeficiency virus (HIV) involves obligatory sequential processes. Following viral entry and reverse transcription, the newly synthesized viral DNA integrates into the host chromatin. Integration is mandatory for viral production, yet HIV infection of CD4 T cells in vivo results in high levels of nonintegrated DNA. The biological potential of nonintegrated HIV DNA is unclear; however, prior work has demonstrated a limited transcription of the nef gene by nonintegrated HIV in infected quiescent T-cell populations. In a kinetic analysis of HIV infection of metabolically active transformed and primary CD4 T cells, we find an unexpected transient expression of both early and late message by nonintegrated HIV DNA. However, only the early multiply spliced transcript was measurably translated. This restriction of protein expression was due in part to inadequate Rev function, since expression of Rev in trans resulted in the expression of the late structural gene gag by nonintegrated HIV DNA.


2001 ◽  
Vol 75 (23) ◽  
pp. 11555-11564 ◽  
Author(s):  
S. Imlach ◽  
S. McBreen ◽  
T. Shirafuji ◽  
C. Leen ◽  
J. E. Bell ◽  
...  

ABSTRACT There is increasing evidence that CD8 lymphocytes may represent targets for infection by human immunodeficiency virus type 1 (HIV-1) in vivo whose destruction may contribute to the loss of immune function underlying AIDS. HIV-1 may infect thymic precursor cells destined to become CD4 and CD8 lymphocytes and contribute to the numerical decline in both subsets on disease progression. There is also evidence for the induction of CD4 expression and susceptibility to infection by HIV-1 of CD8 lymphocytes activated in vitro. To investigate the relationship between CD8 activation and infection by HIV-1 in vivo, activated subsets of CD8 lymphocytes in peripheral blood mononuclear cells (PBMCs) of HIV-seropositive individuals were investigated for CD4 expression and HIV infection. Activated CD8 lymphocytes were identified by expression of CD69, CD71, and the human leukocyte antigen (HLA) class II, the β-chain of CD8, and the RO isoform of CD45. CD4+ and CD4− CD8 lymphocytes, CD4 lymphocytes, other T cells, and non-T cells were purified using paramagnetic beads, and proviral sequences were quantified by PCR using primers from the long terminal repeat region. Frequencies of activated CD8 lymphocytes were higher in HIV-infected study subjects than in seronegative controls, and they frequently coexpressed CD4 (mean frequencies on CD69+, CD71+, and HLA class II+ cells of 23, 37, and 8%, respectively, compared with 1 to 2% for nonactivated CD8 lymphocytes). The level of CD4 expression of the double-positive population approached that of mature CD4 lymphocytes. That CD4 expression renders CD8 cell susceptible to infection was indicated by their high frequency of infection in vivo; infected CD4+ CD8 lymphocytes accounted for between 3 and 72% of the total proviral load in PBMCs from five of the eight study subjects investigated, despite these cells representing a small component of the PBMC population (<3%). Combined, these findings provide evidence that antigenic stimulation of CD8 lymphocytes in vivo induces CD4 expression that renders them susceptible to HIV infection and destruction. The specific targeting of responding CD8 lymphocytes may provide a functional explanation for the previously observed impairment of cytotoxic T-lymphocyte (CTL) function disproportionate to their numerical decline in AIDS and for the deletion of specific clones of CTLs responding to HIV antigens.


2003 ◽  
Vol 77 (10) ◽  
pp. 5846-5854 ◽  
Author(s):  
Andreas Jekle ◽  
Oliver T. Keppler ◽  
Erik De Clercq ◽  
Dominique Schols ◽  
Mark Weinstein ◽  
...  

ABSTRACT The destruction of the immune system by progressive loss of CD4 T cells is the hallmark of AIDS. CCR5-dependent (R5) human immunodeficiency virus type 1 (HIV-1) isolates predominate in the early, asymptomatic stages of HIV-1 infection, while CXCR4-dependent (X4) isolates typically emerge at later stages, frequently coinciding with a rapid decline in CD4 T cells. Lymphocyte killing in vivo primarily occurs through apoptosis, but the importance of apoptosis of HIV-1-infected cells relative to apoptosis of uninfected bystander cells is controversial. Here we show that in human lymphoid tissues ex vivo, apoptosis of uninfected bystander CD4 T cells is a major mechanism of lymphocyte depletion caused by X4 HIV-1 strains but is only a minor mechanism of depletion by R5 strains. Further, X4 HIV-1-induced bystander apoptosis requires the interaction of the viral envelope glycoprotein gp120 with the CXCR4 coreceptor on CD4 T cells. These results emphasize the contribution of bystander apoptosis to HIV-1 cytotoxicity and suggest that in association with a coreceptor switch in HIV disease, T-cell killing evolves from an infection-restricted stage to generalized toxicity that involves a high degree of bystander apoptosis.


1999 ◽  
Vol 73 (12) ◽  
pp. 10281-10288 ◽  
Author(s):  
Vincent Vieillard ◽  
Stephane Jouveshomme ◽  
Nicole Leflour ◽  
Eric Jean-Pierre ◽  
Patrice Debre ◽  
...  

ABSTRACT Beta interferon (IFN-β) exerts pleiotropic antiretroviral activities and affects many different stages of the human immunodeficiency virus (HIV) infectious cycle in IFN-treated cells. To explore whether transfer of genetically engineered human CD4+ T cells producing constitutively low amounts of IFN-β can eradicate HIV in vivo, we developed a new Hu-PBL-SCID mouse model supporting a persistent, replicative HIV infection maintained by periodic reinoculations of activated human CD4+ T cells. Transferring human CD4+ T cells containing the IFN-β retroviral vector drastically reduced the preexisting HIV infection and enhanced CD4+ T-cell survival and Th1 cytokine expression. Furthermore, in 40% of the Hu-PBL-SCID mice engrafted with IFN-β-transduced CD4+ T cells, HIV-1 was undetectable in vivo as well as after cocultivation of mouse tissues with human phytohemagglutinin-stimulated lymphoblasts. These results indicate that a therapeutic strategy based upon IFN-β transduction of CD4+ T cells may be an approach to controlling a preexisting HIV infection and allowing immune restoration.


2005 ◽  
Vol 79 (5) ◽  
pp. 3195-3199 ◽  
Author(s):  
Jean-Daniel Lelièvre ◽  
Frédéric Petit ◽  
Damien Arnoult ◽  
Jean-Claude Ameisen ◽  
Jérôme Estaquier

ABSTRACT Fas-mediated T-cell death is known to occur during human immunodeficiency virus (HIV) infection. In this study, we found that HIV type 1 LAI (HIV-1LAI) primes CD8+ T cells from healthy donors for apoptosis, which occurs after Fas ligation. This effect is counteracted by a broad caspase inhibitor (zVAD-fmk). Fas-mediated cell death does not depend on CD8+ T-cell infection, because it occurred in the presence of reverse transcriptase inhibitors. However, purified CD8+ T cells are sensitive to Fas only in the presence of soluble CD4. Finally, we found that interleukin 7 (IL-7) increases Fas-mediated CD4+ and CD8+ T-cell death induced by HIV-1LAI. Since high levels of IL-7 are a marker of poor prognosis during HIV infection, our data suggest that enhancement of Fas-mediated T-cell death by HIV-1LAI and IL-7 is one of the mechanisms involved in progression to AIDS.


2000 ◽  
Vol 74 (18) ◽  
pp. 8550-8557 ◽  
Author(s):  
Gene G. Olinger ◽  
Mohammed Saifuddin ◽  
Gregory T. Spear

ABSTRACT The ability of human immunodeficiency virus strain MN (HIVMN), a T-cell line-adapted strain of HIV, and X4 and R5 primary isolates to bind to various cell types was investigated. In general, HIVMN bound to cells at higher levels than did the primary isolates. Virus bound to both CD4-positive (CD4+) and CD4-negative (CD4−) cells, including neutrophils, Raji cells, tonsil mononuclear cells, erythrocytes, platelets, and peripheral blood mononuclear cells (PBMC), although virus bound at significantly higher levels to PBMC. However, there was no difference in the amount of HIV that bound to CD4-enriched or CD4-depleted PBMC. Virus bound to CD4− cells was up to 17 times more infectious for T cells in cocultures than was the same amount of cell-free virus. Virus bound to nucleated cells was significantly more infectious than virus bound to erythrocytes or platelets. The enhanced infection of T cells by virus bound to CD4− cells was not due to stimulatory signals provided by CD4− cells or infection of CD4− cells. However, anti-CD18 antibody substantially reduced the enhanced virus replication in T cells, suggesting that virus that bound to the surface of CD4−cells is efficiently passed to CD4+ T cells during cell-cell adhesion. These studies show that HIV binds at relatively high levels to CD4− cells and, once bound, is highly infectious for T cells. This suggests that virus binding to the surface of CD4− cells is an important route for infection of T cells in vivo.


Sign in / Sign up

Export Citation Format

Share Document