scholarly journals Antibiotic Treatment of Experimental Pneumonic Plague in Mice

1998 ◽  
Vol 42 (3) ◽  
pp. 675-681 ◽  
Author(s):  
William R. Byrne ◽  
Susan L. Welkos ◽  
M. Louise Pitt ◽  
Kelly J. Davis ◽  
Ralf P. Brueckner ◽  
...  

ABSTRACT A mouse model was developed to evaluate the efficacy of antibiotic treatment of pneumonic plague; streptomycin was compared to antibiotics with which there is little or no clinical experience. Infection was induced by inhalation of aerosolized Yersinia pestisorganisms. Antibiotics were administered by intraperitoneal injection every 6 hours for 5 days, at doses that produced levels of drug in serum comparable to those observed in humans treated for other serious infections. These studies compared in vitro to in vivo activity and evaluated the efficacy of antibiotics started at different times after exposure. Early treatment (started 24 h after challenge, when 0 of 10 mice tested had positive blood cultures) with netilmicin, ciprofloxacin, ofloxacin, ceftriaxone, ceftazidime, aztreonam, ampicillin, and rifampin (but not cefazolin, cefotetan, or ceftizoxime) demonstrated efficacy comparable to streptomycin. Late treatment (started 42 h after exposure, when five of five mice tested had positive blood cultures) with netilmicin, ciprofloxacin, ofloxacin, and a high dose (20 mg/kg of body weight every 6 h) of gentamicin produced survival rates comparable to that with streptomycin, while all of the beta-lactam antibiotics (cefazolin, cefotetan, ceftriaxone, ceftazidime, aztreonam, and ampicillin) and rifampin were significantly inferior to streptomycin. In fact, all groups of mice treated late with beta-lactam antibiotics experienced accelerated mortality rates compared to normal-saline-treated control mice. These studies indicate that netilmicin, gentamicin, ciprofloxacin, and ofloxacin may be alternatives for the treatment of pneumonic plague in humans. However, the beta-lactam antibiotics are not recommended, based upon poor efficacy in this mouse model of pneumonic plague, particularly when pneumonic plague may be associated with bacteremia.

Blood ◽  
1990 ◽  
Vol 75 (7) ◽  
pp. 1473-1480 ◽  
Author(s):  
SF Burroughs ◽  
GJ Johnson

beta-Lactam antibiotics cause platelet dysfunction with bleeding complications. Previous in vitro studies documented reversible inhibition of agonist-receptor interaction. This mechanism is inadequate to explain the effect of beta-lactam antibiotics in vivo. Platelet function does not return to normal immediately after drug treatment, implying irreversible inhibition of platelet function. We report here evidence of irreversible platelet functional and biochemical abnormalities after in vitro and in vivo exposure to beta-lactam antibiotics. Irreversible binding of [14C]-penicillin (Pen) occurred in vitro. After 24 hours' in vitro incubation with 10 to 20 mmol/L Pen, or ex vivo after antibiotic treatment, irreversible functional impairment occurred; but no irreversible inhibition of alpha 2 adrenergic receptors, measured with [3H]-yohimbine, or high-affinity thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors, measured with agonist [3H]-U46619 and antagonist [3H]-SQ29548, occurred. However, low- affinity platelet TXA2/PGH2 receptors were decreased 40% after Pen exposure in vitro or in vivo, indicating irreversible membrane alteration. Two postreceptor biochemical events were irreversibly inhibited in platelets incubated with Pen for 24 hours in vitro or ex vivo after antibiotic treatment. Thromboxane synthesis was inhibited 28.3% to 81.7%. Agonist-induced rises in cytosolic calcium ([Ca2+]i) were inhibited 40.1% to 67.5% in vitro and 26.6% to 52.2% ex vivo. Therefore, Pen binds to platelets after prolonged exposure, resulting in irreversible dysfunction attributable to inhibition of TXA2 synthesis and impairment of the rise in [Ca2+]i. The loss of low- affinity TXA2/PGH2 receptors suggests that the primary site of action of these drugs is on the platelet membrane.


Blood ◽  
1990 ◽  
Vol 75 (7) ◽  
pp. 1473-1480 ◽  
Author(s):  
SF Burroughs ◽  
GJ Johnson

Abstract beta-Lactam antibiotics cause platelet dysfunction with bleeding complications. Previous in vitro studies documented reversible inhibition of agonist-receptor interaction. This mechanism is inadequate to explain the effect of beta-lactam antibiotics in vivo. Platelet function does not return to normal immediately after drug treatment, implying irreversible inhibition of platelet function. We report here evidence of irreversible platelet functional and biochemical abnormalities after in vitro and in vivo exposure to beta-lactam antibiotics. Irreversible binding of [14C]-penicillin (Pen) occurred in vitro. After 24 hours' in vitro incubation with 10 to 20 mmol/L Pen, or ex vivo after antibiotic treatment, irreversible functional impairment occurred; but no irreversible inhibition of alpha 2 adrenergic receptors, measured with [3H]-yohimbine, or high-affinity thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptors, measured with agonist [3H]-U46619 and antagonist [3H]-SQ29548, occurred. However, low- affinity platelet TXA2/PGH2 receptors were decreased 40% after Pen exposure in vitro or in vivo, indicating irreversible membrane alteration. Two postreceptor biochemical events were irreversibly inhibited in platelets incubated with Pen for 24 hours in vitro or ex vivo after antibiotic treatment. Thromboxane synthesis was inhibited 28.3% to 81.7%. Agonist-induced rises in cytosolic calcium ([Ca2+]i) were inhibited 40.1% to 67.5% in vitro and 26.6% to 52.2% ex vivo. Therefore, Pen binds to platelets after prolonged exposure, resulting in irreversible dysfunction attributable to inhibition of TXA2 synthesis and impairment of the rise in [Ca2+]i. The loss of low- affinity TXA2/PGH2 receptors suggests that the primary site of action of these drugs is on the platelet membrane.


1983 ◽  
Vol 75 (2) ◽  
pp. 30-41 ◽  
Author(s):  
Michael J. Kramer ◽  
Yolanda R. Mauriz ◽  
Maria D. Timmes ◽  
Tamara L. Robertson ◽  
Roy Cleeland

1994 ◽  
Vol 266 (2) ◽  
pp. R392-R399 ◽  
Author(s):  
M. Ogawa ◽  
H. Suzuki ◽  
Y. Sawada ◽  
M. Hanano ◽  
Y. Sugiyama

To examine the role of the choroid plexus in eliminating organic anions from the cerebrospinal fluid (CSF), a kinetic study was performed both in in vivo and in vitro experiments using [3H]benzylpenicillin (PCG) as a model compound. In vivo, after intracerebroventricular administration, [3H]PCG was eliminated from the CSF much more rapidly than [14C]mannitol. Analysis of the elimination clearance from the CSF revealed that 12 and 24% of the disappearance of [3H]PCG can be accounted for by convective loss at a rate equivalent to CSF turnover, and by diffusional loss across the ependymal surface into the brain extracellular space, respectively. Approximately two-thirds of [3H]PCG elimination was due to a saturable process [Michaelis constant (Km) = 43.0 +/- 17.8 microM, maximum velocity (Vmax) = 619 +/- 286 pmol.min-1 x rat-1]. These kinetic parameters obtained in vivo were comparable to those determined previously in vitro, i.e., [3H]PCG was accumulated by the isolated rat choroid plexus via an active transport mechanism (Km = 58 microM, Vmax = 504 pmol.min-1 x rat-1; H. Suzuki, Y. Sawada, Y. Sugiyama, T. Iga, and H. Hanano, J. Pharmacol. Exp. Ther. 242: 660-665, 1987). Furthermore, other organic anions (probenecid, ampicillin, cefodizime, cefotaxime, and ceftriaxone) reduced the transport of [3H]PCG in a dose-dependent manner both in vivo and in vitro. A good correlation was observed between the log inhibition constant (Ki) values obtained for these ligands in vivo and in vitro (r = 0.94, P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 640-640
Author(s):  
Karin Vanderkerken ◽  
Eline Menu ◽  
Thomas Stromberg ◽  
Hendrik De Raeve ◽  
Kewal Asosingh ◽  
...  

Abstract Multiple myeloma (MM) represents a B-cell malignancy, characterized by monoclonal proliferation of plasma cells in the bone marrow (BM) and is associated with osteolysis and angiogenesis. Insulin-like growth factor-1 (IGF-1), produced by the BM stromal cells, has been described as an important factor in the survival, proliferation and migration of MM cells. The latter process is involved in the homing of the MM cells to the BM. IGF-1 also induces VEGF secretion by the MM cells, thus stimulating angiogenesis in the BM. As IGF-1 is a pleiotropic factor in MM, therapeutic strategies targeting the IGF-1R may be effective as anti-tumor treatments. In this work we investigated the effect of an IGF-1 receptor tyrosine kinase inhibitor (picropodophyllin or PPP1) in the murine, syngeneic 5T33MM model of multiple myeloma. This mouse model is representative for the human disease and can combine in vitro and in vivo studies. We first investigated the effects of PPP on the MM cells in vitro. We and others have previously demonstrated that IGF-1 induced ERK activation, involved in VEGF secretion and proliferation. When the 5T33MM cells were preincubated with 1microM PPP, Western blot analysis demonstrated the blocking of this activation. Furthermore, when the 5T33MM cells were preincubated with PPP for 30 min, IGF-1 induced VEGF secretion and proliferation of the 5T33MM cells were completely blocked. Next, we used the tyrosine kinase inhibitor PPP in vivo. 5T33MM cells were injected intravenously in C57BLKaLwRij mice and the development of the disease was monitored by measuring the serum paraprotein concentration. Mice were either treated with a low (17mM, IP, twice a day) or a high dose of PPP (50mM, IP, twice a day) or with the vehicle (DMSO/oil 9/1) from the day of injection with 5T33MM onward. At week 3, vehicle controls showed signs of morbidity and were sacrificed. The presence of tumor was measured by assessing serum paraprotein concentrations and determining the proportion of idiotype positive cells in the BM by flow cytometry. Angiogenesis was assessed by measuring the microvessel density on CD31 stained paraffin sections. The tumor burden in the bone marrow in the PPP treated mice was 77% lower than in vehicle treated animals (p< 0,0001) and the serum paraprotein concentration was 90% lower (p< 0,0001). The microvessel density in the BM of the PPP treated group was reduced by 60% (p< 0,02). In a separate survival experiment the mice were either treated with the vehicle or with the high dose (50mM) of PPP, from the time of tumor injection. Kaplan-Meier analysis demonstrated a significant increase in survival after treatment with PPP when compared with vehicle (28 vs. 18 days, p<0,001). These data demonstrate that the IGF-1RTK inhibitor PPP possesses strong anti-tumor activity, as demonstrated both in vitro and in vivo in a syngeneic model of multiple myeloma, and may therefore be an effective therapeutic candidate for MM treatment.


Sign in / Sign up

Export Citation Format

Share Document