scholarly journals In Vitro Activity of the New Ketolide Telithromycin Compared with Those of Macrolides against Streptococcus pyogenes: Influences of Resistance Mechanisms and Methodological Factors

2000 ◽  
Vol 44 (11) ◽  
pp. 2999-3002 ◽  
Author(s):  
Pascale Bemer-Melchior ◽  
Marie-Emmanuelle Juvin ◽  
Sandrine Tassin ◽  
Andre Bryskier ◽  
Gian Carlo Schito ◽  
...  

ABSTRACT One hundred and seven clinical isolates of Streptococcus pyogenes, 80 susceptible to macrolides and 27 resistant to erythromycin A (MIC >0.5 μg/ml), were examined. The erythromycin A-lincomycin double-disk test assigned 7 resistant strains to the M-phenotype, 8 to the inducible macrolide, lincosamide, and streptogramin B resistance (iMLSB) phenotype, and 12 to the constitutive MLSB resistance (cMLSB) phenotype. MICs of erythromycin A, clarithromycin, azithromycin, roxithromycin, and clindamycin were determined by a broth microdilution method. MICs of telithromycin were determined by three different methods (broth microdilution, agar dilution, and E-test methods) in an ambient air atmosphere and in a 5 to 6% CO2 atmosphere. Erythromycin A resistance genes were investigated by PCR in the 27 erythromycin A-resistant isolates. MICs of erythromycin A and clindamycin showed six groups of resistant strains, groups A to F. iMLSB strains (A, B, and D groups) are characterized by two distinct patterns of resistance correlated with genotypic results. A- and B-group strains were moderately resistant to 14- and 15-membered ring macrolides and highly susceptible to telithromycin. All A- and B-group isolates harbored erm TR gene, D-group strains, highly resistant to macrolides and intermediately resistant to telithromycin (MICs, 1 to 16 μg/ml), were all characterized by having the ermB gene. All M-phenotype isolates (C group), resistant to 14- and 15-membered ring macrolides and susceptible to clindamycin and telithromycin, harbored the mefA gene. All cMLSB strains (E and F groups) with high level of resistance to macrolides, lincosamide, and telithromycin had the ermB gene. The effect of 5 to 6% CO2 was remarkable on resistant strains, by increasing MICs of telithromycin from 1 to 6 twofold dilutions against D-E- and F-group isolates.

1997 ◽  
Vol 41 (1) ◽  
pp. 129-134 ◽  
Author(s):  
E L Fasola ◽  
S Bajaksouzian ◽  
P C Appelbaum ◽  
M R Jacobs

Susceptibilities of 124 strains of Streptococcus pneumoniae to erythromycin and clindamycin were determined by the National Committee for the Clinical Laboratory Standards (NCCLS) broth microdilution method, with incubation for 20 to 24 h in ambient air and with modifications of this method by incubation for up to 48 h in air and CO2. Strains were also tested by agar dilution, E-test, and disk diffusion; good correlation was obtained with these methods, with clear separation into bimodal populations of susceptible and resistant stains. The broth microdilution method, however, using incubation in air for 24 h (NCCLS method), misclassified 4 of 92 erythromycin-resistant strains (1 as susceptible and 3 as intermediate) and 25 of 58 clindamycin-resistant strains (all as susceptible). With the exception of one strain with clindamycin, susceptible and resistant strains were correctly classified by the microdilution method with incubation in CO2 for 24 h or in ambient air for 48 h. Disk diffusion, agar dilution, and E-test methods with incubation in 5% CO2 are therefore reliable methods for susceptibility testing of pneumococci against these agents. However, the NCCLS microdilution method, which specifies incubation for 20 to 24 h in ambient air, produced significant very major errors (43%) clindamycin. Modification of the microdilution method by incubation in 5% CO2 or by extension of incubation time in ambient air to 48 h corrected these errors. Disk diffusion, however, was shown to be a simple, convenient, and reliable method for susceptibility testing of pneumococci to erythromycin and clindamycin and is suggested as the method of choice for these agents.


2006 ◽  
Vol 50 (5) ◽  
pp. 1727-1730 ◽  
Author(s):  
Glenn A. Pankuch ◽  
Gengrong Lin ◽  
Dianne B. Hoellman ◽  
Caryn E. Good ◽  
Michael R. Jacobs ◽  
...  

ABSTRACT The in vitro activity of retapamulin against 106 Staphylococcus aureus isolates and 109 Streptococcus pyogenes isolates was evaluated by the agar dilution, broth microdilution, E-test, and disk diffusion methodologies. Where possible, the tests were performed by using the CLSI methodology. The results of agar dilution, broth microdilution, and E-test (all with incubation in ambient air) for S. aureus yielded similar MICs, in the range of 0.03 to 0.25 μg/ml. These values corresponded to zone diameters between 25 and 33 mm by the use of a 2-μg retapamulin disk. Overall, 99% of the agar dilution results and 95% of E-test results for S. aureus were within ±1 dilution of the microdilution results. For S. pyogenes, the MICs obtained by the agar and broth microdilution methods (both after incubation in ambient air) were in the range of 0.008 to 0.03 μg/ml, and E-test MICs (with incubation in ambient air) were 0.016 to 0.06 μg/ml. For S. pyogenes, 100% of the agar dilution MIC results were within ±1 dilution of the broth microdilution results. E-test MICs (after incubation in ambient air) were within ±1 and ±2 dilutions of the broth microdilution results for 76% and 99% of the isolates, respectively. E-test MICs for S. pyogenes strains in CO2 were up to 4 dilutions higher than those in ambient air. Therefore, it is recommended that when retapamulin MICs are determined by E-test, incubation be done in ambient air and not in CO2, due to the adverse effect of CO2 on the activity of this compound. Diffusion zones (with incubation in CO2) for S. pyogenes were 18 to 24 mm. Retapamulin MICs for all strains by all methods (with incubation in ambient air) were ≤0.25 μg/ml. These results demonstrate that S. pyogenes (including macrolide-resistant strains) and S. aureus (including methicillin-resistant and vancomycin-nonsusceptible strains) are inhibited by very low concentrations of retapamulin and that all four testing methods are satisfactory for use for susceptibility testing.


2009 ◽  
Vol 54 (1) ◽  
pp. 230-238 ◽  
Author(s):  
Pamela McGhee ◽  
Catherine Clark ◽  
Klaudia M. Kosowska-Shick ◽  
Kensuke Nagai ◽  
Bonifacio Dewasse ◽  
...  

ABSTRACT CEM-101 had MIC ranges of 0.002 to 0.016 μg/ml against macrolide-susceptible pneumococci and 0.004 to 1 μg/ml against macrolide-resistant phenotypes. Only 3 strains with erm(B), with or without mef(A), had CEM-101 MICs of 1 μg/ml, and 218/221 strains had CEM-101 MICs of ≤0.5 μg/ml. CEM-101 MICs were as much as 4-fold lower than telithromycin MICs against all strains. For Streptococcus pyogenes, CEM-101 MICs ranged from 0.008 to 0.03 μg/ml against macrolide-susceptible strains and from 0.015 to 1 μg/ml against macrolide-resistant strains. Against erm(B) strains, erythromycin, azithromycin, and clarithromycin MICs were 32 to >64 μg/ml, while 17/19 strains had telithromycin MICs of 4 to 16 μg/ml; CEM-101 MICs were 0.015 to 1 μg/ml. By comparison, erm(A) and mef(A) strains had CEM-101 MICs of 0.015 to 0.5 μg/ml, clindamycin and telithromycin MICs of ≤1 μg/ml, and erythromycin, azithromycin, and clarithromycin MICs of 0.5 to >64 μg/ml. Pneumococcal multistep resistance studies showed that although CEM-101 yielded clones with higher MICs for all eight strains tested, seven of eight strains had clones with CEM-101 MICs that rose from 0.004 to 0.03 μg/ml (parental strains) to 0.06 to 0.5 μg/ml (resistant clones); for only one erm(B) mef(A) strain with a parental MIC of 1 μg/ml was there a resistant clone with a MIC of 32 μg/ml, with no detectable mutations in the L4, L22, or 23S rRNA sequence. Among two of five S. pyogenes strains tested, CEM-101 MICs rose from 0.03 to 0.25 μg/ml, and only for the one strain with erm(B) did CEM-101 MICs rise from 1 to 8 μg/ml, with no changes occurring in any macrolide resistance determinant. CEM-101 had low MICs as well as low potential for the selection of resistant mutants, independent of bacterial species or resistance phenotypes in pneumococci and S. pyogenes.


2000 ◽  
Vol 44 (6) ◽  
pp. 1749-1753 ◽  
Author(s):  
Wendy J. Munckhof ◽  
Glenn Borlace ◽  
John D. Turnidge

ABSTRACT We investigated the in vitro postantibiotic effects (PAEs) of the ketolides telithromycin (HMR 3647) and HMR 3004 and analyzed the results using the sigmoid E max model. Mean maximum telithromycin PAEs against erythromycin A-susceptible strains of Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae were 3.7, 8.9, and 9.7 h, respectively, while maximum PAEs for erythromycin A-resistant strains were much shorter. Mean maximum HMR 3004 PAEs were 3.2 to 4.4 h for all species.


1997 ◽  
Vol 41 (7) ◽  
pp. 1594-1597 ◽  
Author(s):  
A B Brueggemann ◽  
K C Kugler ◽  
G V Doern

The in vitro activity of a novel 8-methoxyquinolone, BAY 12-8039, against recent clinical isolates of Streptococcus pneumoniae (n = 404), Haemophilus influenzae (n = 330), and Moraxella catarrhalis (n = 250) was evaluated. Activity was compared to those of six other fluoroquinolones: ciprofloxacin, clinafloxacin, levofloxacin, ofloxacin, sparfloxacin and trovafloxacin. BAY 12-8039 and clinafloxacin had the highest levels of activity against S. pneumoniae, both with a MIC at which 90% of the isolates were inhibited (MIC90) of 0.06 microg/ml. Trovafloxacin and sparfloxacin were the next most active agents versus S. pneumoniae (MIC90s = 0.12 microg/ml). No differences in activity against penicillin-susceptible, -intermediate, or -resistant strains of S. pneumoniae were noted for any of the fluoroquinolones tested. MIC90s for the seven fluoroquinolones ranged from 0.008 to 0.06 microg/ml versus H. influenzae and from 0.008 to 0.12 microg/ml for M. catarrhalis. The MICs for two strains of S. pneumoniae and one strain of H. influenzae were noted to be higher than those for the general population of organisms for all of the fluoroquinolones tested. Finally, the activity of BAY 12-8039 versus S. pneumoniae was found to be diminished when MIC determinations were performed with incubation of agar dilution plates or broth microdilution trays in 5 to 7% CO2 versus ambient air.


2002 ◽  
Vol 46 (3) ◽  
pp. 783-786 ◽  
Author(s):  
Virginia D. Shortridge ◽  
Ping Zhong ◽  
Zhensheng Cao ◽  
Jill M. Beyer ◽  
Laurel S. Almer ◽  
...  

ABSTRACT The activity of a new ketolide, ABT-773, was compared to the activity of the ketolide telithromycin (HMR-3647) against over 600 gram-positive clinical isolates, including 356 Streptococcus pneumoniae, 167 Staphylococcus aureus, and 136 Streptococcus pyogenes isolates. Macrolide-susceptible isolates as well as macrolide-resistant isolates with ribosomal methylase (Erm), macrolide efflux (Mef), and ribosomal mutations were tested using the NCCLS reference broth microdilution method. Both compounds were extremely active against macrolide-susceptible isolates, with the minimum inhibitory concentrations at which 90% of the isolates tested were inhibited (MIC90s) for susceptible streptococci and staphylococci ranging from 0.002 to 0.03 μg/ml for ABT-773 and 0.008 to 0.06 μg/ml for telithromycin. ABT-773 had increased activities against macrolide-resistant S. pneumoniae (Erm MIC90, 0.015 μg/ml; Mef MIC90, 0.12 μg/ml) compared to those of telithromycin (Erm MIC90, 0.12 μg/ml; Mef MIC90, 1 μg/ml). Both compounds were active against strains with rRNA or ribosomal protein mutations (MIC90, 0.12 μg/ml). ABT-773 was also more active against macrolide-resistant S. pyogenes (ABT-773 Erm MIC90, 0.5 μg/ml; ABT-773 Mef MIC90, 0.12 μg/ml; telithromycin Erm MIC90, >8 μg/ml; telithromycin Mef MIC90, 1.0 μg/ml). Both compounds lacked activity against constitutive macrolide-resistant Staphylococcus aureus but had good activities against inducibly resistant Staphylococcus aureus (ABT-773 MIC90, 0.06 μg/ml; telithromycin MIC90, 0.5 μg/ml). ABT-773 has superior activity against macrolide-resistant streptococci compared to that of telithromycin.


1997 ◽  
Vol 41 (10) ◽  
pp. 2149-2158 ◽  
Author(s):  
C Agouridas ◽  
A Bonnefoy ◽  
J F Chantot

The antibacterial activity of RU 64004, a new ketolide, was evaluated against more than 600 bacterial strains and was compared with those of various macrolides and pristinamycin. RU 64004 had good activity against multiresistant pneumococci, whether they were erythromycin A resistant or not, including penicillin-resistant strains. RU 64004 inhibited 90% of pneumococci resistant to erythromycin A and penicillin G at 0.6 and 0.15 microg/ml, respectively. Unlike macrolides, RU 64004 did not induce the phenotype of resistance to macrolides-lincosamides-streptogramin B. Its good antibacterial activity against multiresistant pneumococci ran in parallel with its well-balanced activity against all bacteria involved in respiratory infections (e.g., Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pyogenes). In contrast to all comparators (14- and 16-membered-ring macrolides and pristinamycin), RU 64004 displayed high therapeutic activity in animals infected with all major strains, irrespective of the phenotypes of the strains. The results suggest that RU 64004 has potential for use in the treatment of infections caused by respiratory pathogens including multiresistant pneumococci.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S655-S655
Author(s):  
Daniel Navas ◽  
Angela Charles ◽  
Amy Carr ◽  
Jose Alexander

Abstract Background The activity of imipenem/relebactam (I/R), ceftazidime/avibactam (CZA) and cefiderocol (FDC) were evaluated against clinical isolates of multidrug resistant (MDR) strains of P. aeruginosa which was resistant to ceftolozane/tazobactam (C/T). The recent increase of MDR P. aeruginosa strains isolated from clinical samples has prompted research and development of new antimicrobials that can withstand its multiple resistance mechanisms. C/T is an effective option for treatment of MDR P. aeruginosa in our facility with only 10% of resistance in MDR strains, but the emergence of resistance may occur due to the presence of a carbapenemase gene or an ampC mutation. Methods Antimicrobial susceptibility testing for C/T Etest® (bioMérieux, Inc.) were performed on all MDR strains initially screened by the VITEK2® (bioMérieux, Inc.). 10% (n=20) of all MDR isolates were resistant to C/T by the CLSI 2019 breakpoints. These resistant isolates were tested for presence of a carbapenemase gene using the GeneXpert CARBA-R (Cepheid®) PCR and against CZA Etest® (bioMérieux, Inc.) I/R gradient strips (Liofilchem®) and FDC broth microdilution (Thermo Scientific™ Sensititre™). Results A total of 20 clinical isolates of MDR P. aeruginosa resistant to C/T were tested following standardized CLSI protocols and techniques. All 20 isolates were screened for the presence of a carbapenemase gene (blaVIM, blaNDM, blaKPC, blaOXA-48, blaIMP). A blaVIM gene was detected in 6 (30%) out of 20 isolates. FDC demonstrated the greatest activity with 85% (n=17) of susceptible isolates (CLSI MIC <4µg/dL). CZA (CLSI MIC <8µg/dL) and I/R (FDA MIC <2µg/dL) showed 15% (n=3) and 10% (n=2) of susceptible isolates respectively. FDC was active against all 6 blaVIM isolates, where all 6 strains were resistant to CZA and I/R as expected. 3 isolates tested non-susceptible against FDC; additional characterization was not performed at this time. Conclusion Based on these results, FDC demonstrated the greatest in-vitro activity against C/T resistant strains of MDR P. aeruginosa. FDC also demonstrated activity against all 6 MDR P. aeruginosa carrying blaVIM gene. FDC is a strong option to consider on MDR P. aeruginosa strains based on a resistance testing algorithm and a cost/effective protocol. Disclosures All Authors: No reported disclosures


2006 ◽  
Vol 50 (12) ◽  
pp. 4027-4029 ◽  
Author(s):  
Lucio Vera-Cabrera ◽  
Barbara A. Brown-Elliott ◽  
Richard J. Wallace ◽  
Jorge Ocampo-Candiani ◽  
Oliverio Welsh ◽  
...  

ABSTRACT DA-7867 and DA-7157 are oxazolidinones active against pathogenic aerobic actinomycetes including Nocardia spp. and Mycobacterium tuberculosis. However, the activity of these drugs against nontuberculous mycobacterium (NTM) species is not known. In this work, we compared the susceptibilities of 122 clinical isolates and 29 reference species of both rapidly growing and slowly growing mycobacteria to linezolid, DA-7867, and DA-7157 by the broth microdilution method. The MICs for 50 and 90% of the strains tested (MIC50s and MIC90s, respectively) of DA-7867 and DA-7157 were lower than those of linezolid. In all of the cases, a MIC90 of <8 μg/ml was observed for all of the species tested in both groups of NTM. For M. kansasii and M. marinum isolates, the MIC90s of both DA-7867 and DA-7157 were less than 0.5 μg/ml. These results demonstrate the potential of these compounds to treat NTM infections.


Sign in / Sign up

Export Citation Format

Share Document