scholarly journals Molecular and Biochemical Characterization of a Novel Class A β-Lactamase (HER-1) from Escherichia hermannii

2003 ◽  
Vol 47 (8) ◽  
pp. 2669-2673 ◽  
Author(s):  
Anne Beauchef-Havard ◽  
Guillaume Arlet ◽  
Valerie Gautier ◽  
Roger Labia ◽  
Patrick Grimont ◽  
...  

ABSTRACT Escherichia hermannii showed a low level of resistance to amoxicillin and ticarcillin, reversed by clavulanate, and a moderate susceptibility to piperacillin but was susceptible to all cephalosporins. A bla gene was cloned and encoded a typical class A β-lactamase (HER-1, pI 7.5), which shares 45, 44, 41, and 40% amino acid identity with other β-lactamases, AER-1 from Aeromonas hydrophila, MAL-1/Cko-1 from Citrobacter koseri, and TEM-1 and LEN-1, respectively. No ampR gene was detected. Only penicillins were efficiently hydrolyzed, and no hydrolysis was observed for cefuroxime and broad-spectrum cephalosporins. Sequencing of the bla gene in 12 other strains showed 98 to 100% identity with bla HER-1.

2002 ◽  
Vol 46 (4) ◽  
pp. 966-970 ◽  
Author(s):  
Samuel Bellais ◽  
Thierry Naas ◽  
Patrice Nordmann

ABSTRACT Antibiotic susceptibility testing by disk diffusion of a Chryseobacterium gleum isolate, strain CIP 103039, showed a typical synergy image between clavulanic acid and expanded-spectrum cephalosporins. Shotgun cloning gave a recombinant plasmid in Escherichia coli that produced a β-lactamase, CGA-1, with a pI value of 8.9 that conferred resistance to most penicillins (except ureidopenicillins) and narrow-spectrum cephalosporins and an intermediate susceptibility to expanded-spectrum cephalosporins and aztreonam. The CGA-1 amino acid sequence shared only 60% amino acid identity with CME-1 and CME-2 from Chryseobacterium meningosepticum, the most closely related β-lactamases. CGA-1 was very likely chromosome encoded. It is a novel member of the PER subgroup of Ambler class A β-lactamases (Bush functional group 2be).


2005 ◽  
Vol 49 (10) ◽  
pp. 4174-4179 ◽  
Author(s):  
Claire Héritier ◽  
Laurent Poirel ◽  
Pierre-Edouard Fournier ◽  
Jean-Michel Claverie ◽  
Didier Raoult ◽  
...  

ABSTRACT A chromosomally encoded oxacillinase, OXA-69, was characterized from Acinetobacter baumannii AYE. β-Lactamase OXA-69 shared 97% amino acid identity with the recently described OXA-51 enzyme of A. baumannii and 62 and 56% amino acid identity with the carbapenem-hydrolyzing oxacillinases OXA-24 and OXA-23, respectively. Biochemical characterization of the purified OXA-69 revealed a narrow-spectrum hydrolysis profile but including, at a low level, imipenem and meropenem. By PCR and sequencing bla OXA-69-like genes were identified in all A. baumannii strains tested (n = 12), suggesting that this oxacillinase is naturally occurring in that species.


2015 ◽  
Vol 60 (3) ◽  
pp. 1869-1873 ◽  
Author(s):  
Dereje Dadi Gudeta ◽  
Simona Pollini ◽  
Jean-Denis Docquier ◽  
Valeria Bortolaia ◽  
Gian Maria Rossolini ◽  
...  

CPS-1 is a subclass B3 metallo-β-lactamase from aChryseobacteriumpisciumisolate collected from soil, showing 68% amino acid identity to the GOB-1 enzyme. CPS-1 was overproduced inEscherichia coliRosetta (DE3), purified by chromatography, and biochemically characterized. This enzyme exhibits a broad-spectrum substrate profile, including penicillins, cephalosporins, and carbapenems, which overall resembles those of L1, GOB-1, and acquired subclass B3 enzymes AIM-1 and SMB-1.


2019 ◽  
Vol 74 (10) ◽  
pp. 2891-2894 ◽  
Author(s):  
Jennifer Schauer ◽  
Sören G Gatermann ◽  
Matthias Marschal ◽  
Niels Pfennigwerth

Abstract Objectives To characterize a new variant of the FRI class A carbapenemase isolated from an MDR clinical Enterobacter cloacae isolate. Methods A carbapenem-resistant E. cloacae was isolated from a rectal swab from a patient in an ICU in Southern Germany. Various phenotypic tests confirmed production of a putative class A carbapenemase. The new bla gene variant, blaFRI-3, and its genetic environment were characterized by WGS. Biochemical characterization was performed by heterologous expression in Escherichia coli TOP10 and by purification of the enzyme with subsequent determination of its kinetic parameters. Results PCR and sequencing carried out for different class A carbapenemase genes confirmed the presence of a novel variant of blaFRI-1. The novel variant was named FRI-3 and exhibited 91%, 96% and 92% amino acid identity to FRI-1, FRI-2 and FRI-4, respectively. E. coli TOP10 expressing blaFRI-3 showed increased resistance to almost all β-lactams. Comparing the catalytic behaviour of FRI-3 and FRI-1, it was shown that FRI-3 had the same substrate spectrum, but basically hydrolysed β-lactams less efficiently than FRI-1. WGS data revealed that blaFRI-3 was located on a 111 kb plasmid. Conclusions The biochemical characterization of FRI-3 illustrates that even a few differences in the amino acid sequence can lead to altered catalytic activities of β-lactamases belonging to the same family.


2008 ◽  
Vol 52 (6) ◽  
pp. 1952-1956 ◽  
Author(s):  
Yohei Doi ◽  
Laurent Poirel ◽  
David L. Paterson ◽  
Patrice Nordmann

ABSTRACT A chromosomally encoded class D β-lactamase, OXA-114, was characterized from Achromobacter xylosoxidans strain CIP69598. β-Lactamase OXA-114 shared 56% amino acid identity with the naturally occurring class D β-lactamase of Burkholderia cenocepacia and 42% identity with the acquired oxacillinases OXA-9 and OXA-18. OXA-114 has a narrow-spectrum hydrolysis profile, although it includes imipenem, at a very low level. PCR and sequencing revealed that bla OXA-114-like genes were identified in all A. xylosoxidans strains tested (n = 5), indicating that this β-lactamase is naturally occurring in that species. Induction experiments with imipenem and cefoxitin did not show inducibility of bla OXA-114 expression.


2007 ◽  
Vol 51 (11) ◽  
pp. 4009-4014 ◽  
Author(s):  
Delphine Girlich ◽  
Roland Leclercq ◽  
Thierry Naas ◽  
Patrice Nordmann

ABSTRACT A chromosomal β-lactamase gene from Bacillus clausii NR, which is used as a probiotic, was cloned and expressed in Escherichia coli. It encodes a clavulanic acid-susceptible Ambler class A β-lactamase, BCL-1, with a pI of 5.5 and a molecular mass of ca. 32 kDa. It shares 91% and 62% amino acid identity with the chromosomally encoded PenP penicillinases from B. clausii KSM-K16 and Bacillus licheniformis, respectively. The hydrolytic profile of this β-lactamase includes penicillins, narrow-spectrum cephalosporins, and cefpirome. This chromosome-encoded enzyme was inducible in B. clausii, and its gene is likely related to upstream-located regulatory genes that share significant identity with those reported to be upstream of the penicillinase gene of B. licheniformis. The bla BCL-1 gene was located next to the known chromosomal aadD2 gene and the erm34 gene, which encode resistance to aminoglycosides and macrolides, respectively. Similar genes were found in a collection of B. clausii reference strains.


2001 ◽  
Vol 45 (12) ◽  
pp. 3595-3598 ◽  
Author(s):  
Jean W. Decousser ◽  
Laurent Poirel ◽  
Patrice Nordmann

ABSTRACT A chromosomally located β-lactamase gene, cloned and expressed inEscherichia coli from a reference strain of the enterobacterial species Kluyvera cryocrescens, encoded a clavulanic acid-inhibited Ambler class A enzyme, KLUC-1, with a pI value of 7.4. KLUC-1 shared 86% amino acid identity with a subgroup of plasmid-mediated CTX-M-type extended-spectrum β-lactamases (CTX-M-1, -3, -10, -11, and -12), the most closely related enzymes, and 77% amino acid identity with KLUA-1 from Kluyvera ascorbata.The substrate profile of KLUC-1 corresponded to that of CTX-M-type enzymes.


2001 ◽  
Vol 45 (4) ◽  
pp. 1249-1253 ◽  
Author(s):  
Maria Letizia Riccio ◽  
Lucia Pallecchi ◽  
Roberta Fontana ◽  
Gian Maria Rossolini

ABSTRACT An Achromobacter xylosoxydans strain showing broad-spectrum resistance to β-lactams (including carbapenems) and aminoglycosides was isolated at the University Hospital of Verona (Verona, Italy). This strain was found to produce metallo-β-lactamase activity and to harbor a 30-kb nonconjugative plasmid, named pAX22, carrying abla VIM-1 determinant inserted into a class 1 integron. Characterization of this integron, named In70, revealed an original array of four gene cassettes containing, respectively, thebla VIM-1 gene and three different aminoglycoside resistance determinants, including an aacA4allele, a new aph-like gene named aphA15, and an aadA1 allele. The aphA15 gene is the first example of an aph-like gene carried on a mobile gene cassette, and its product exhibits close similarity to the APH(3′)-IIa aminoglycoside phosphotransferase encoded by Tn5 (36% amino acid identity) and to an APH(3′)-IIb enzyme fromPseudomonas aeruginosa (38% amino acid identity). Expression of the cloned aphA15 gene in Escherichia coli reduced the susceptibility to kanamycin and neomycin as well as (slightly) to amikacin, netilmicin, and streptomycin. Characterization of the 5′ and 3′ conserved segments of In70 and of their flanking regions showed that In70 belongs to the group of class 1 integrons associated with defective transposon derivatives originating from Tn402-like elements. The structure of the 3′ conserved segment indicates the closest ancestry with members of the In0-In2 lineage. In70, with its array of cassette-borne resistance genes, can mediate broad-spectrum resistance to most β-lactams and aminoglycosides.


2002 ◽  
Vol 46 (9) ◽  
pp. 2791-2796 ◽  
Author(s):  
Samuel Bellais ◽  
Thierry Naas ◽  
Patrice Nordmann

ABSTRACT Chryseobacterium gleum (previously included in the Flavobacterium IIb species) is a gram-negative aerobe that is a source of nosocomial infections. An Ambler class B β-lactamase gene was cloned and expressed in Escherichia coli from reference strain C. gleum CIP 103039 that had reduced susceptibility to expanded-spectrum cephalosporins and carbapenems. The purified β-lactamase, CGB-1, with a pI value of 8.6 and a determined relative molecular mass of ca. 26 kDa, hydrolyzed penicillins; narrow- and expanded-spectrum cephalosporins; and carbapenems. CGB-1 was a novel member of the molecular subclass B1 of metallo-enzymes. It had 83 and 42% amino acid identity with IND-1 from Chryseobacterium indologenes and BlaB from C. meningosepticum, respectively. Thus, in addition to the previously characterized clavulanic acid-inhibited extended-spectrum β-lactamase CGA-1 of Ambler class A, C. gleum produces a very likely chromosome-borne class B β-lactamase.


1998 ◽  
Vol 42 (8) ◽  
pp. 2074-2083 ◽  
Author(s):  
Thierry Naas ◽  
Wladimir Sougakoff ◽  
Anne Casetta ◽  
Patrice Nordmann

ABSTRACT The Pseudomonas aeruginosa Mus clinical isolate produces OXA-18, a pI 5.5 class D extended-spectrum β-lactamase totally inhibited by clavulanic acid (L. N. Philippon, T. Naas, A.-T. Bouthors, V. Barakett, and P. Nordmann, Antimicrob. Agents Chemother. 41:2188–2195, 1997). A second β-lactamase was cloned, and the recombinant Escherichia coli clone pPL10 expressed a pI 7.4 β-lactamase which conferred high levels of amoxicillin and ticarcillin resistance and which was partially inhibited by clavulanic acid. The 2.5-kb insert from pPL10 was sequenced, and a 266-amino-acid protein (OXA-20) was deduced; this protein has low amino acid identity with most of the class D β-lactamases except OXA-2, OXA-15, and OXA-3 (75% amino acid identity with each). OXA-20 is a restricted-spectrum oxacillinase and is unusually inhibited by clavulanic acid. OXA-20 is a peculiar β-lactamase because its translation initiates with a TTG (leucine) codon, which is rarely used as a translational origin in bacteria. Exploration of the genetic environment of oxa20revealed the presence of the following integron features: (i) a second antibiotic resistance gene, aacA4; (ii) anintI1 gene; and (iii) two 59-base elements, each associated with either oxa20 or aacA4. This integron is peculiar because it lacks the 3′ conserved region, and therefore is not a sul1-associated integron like most of them, and because its 3′ end is located within tnpR, a gene involved in the transposition of Tn5393, a gram-negative transposon.P. aeruginosa Mus produces two novel and unrelated oxacillinases, OXA-18 and OXA-20, both of which are inhibited by clavulanic acid.


Sign in / Sign up

Export Citation Format

Share Document