scholarly journals High-Throughput Screen for Inhibitors of Transglycosylase and/or Transpeptidase Activities of Escherichia coli Penicillin Binding Protein 1b

2004 ◽  
Vol 48 (1) ◽  
pp. 30-40 ◽  
Author(s):  
B. Chandrakala ◽  
Radha K. Shandil ◽  
Upasana Mehra ◽  
Sudha Ravishankar ◽  
Parvinder Kaur ◽  
...  

ABSTRACT Penicillin binding protein (PBP) 1b of Escherichia coli has both transglycosylase and transpeptidase activities, which are attractive targets for the discovery of new antibacterial agents. A high-throughput assay that detects inhibitors of the PBPs was described previously, but it cannot distinguish them from inhibitors of the MraY, MurG, and lipid pyrophosphorylase. We report on a method that distinguishes inhibitors of both activities of the PBPs from those of the other three enzymes. Radioactive peptidoglycan was synthesized by using E. coli membranes. Following termination of the reaction the products were analyzed in three ways. Wheat germ agglutinin (WGA)-coated scintillation proximity assay (SPA) beads were added to one set, and the same beads together with a detergent were added to a second set. Type A polyethylenimine-coated WGA-coated SPA beads were added to a third set. By comparison of the results of assays run in parallel under the first two conditions, inhibitors of the transpeptidase and transglycosylase could be distinguished from inhibitors of the other enzymes, as the inhibitors of the other enzymes showed similar inhibitory concentrations (IC50s) under both conditions but the inhibitors of the PBPs showed insignificant inhibition in the absence of detergent. Furthermore, comparison of the results of assays run under conditions two and three enabled the distinction of transpeptidase inhibitors. Penicillin and other β-lactams showed insignificant inhibition with type A beads compared with that shown with WGA-coated SPA beads plus detergent. However, inhibitors of the other four enzymes (tunicamycin, nisin, bacitracin, and moenomycin) showed similar IC50s under both conditions. We show that the main PBP being measured under these conditions is PBP 1b. This screen can be used to find novel transglycosylase or transpeptidase inhibitors.

1982 ◽  
Vol 152 (2) ◽  
pp. 904-906
Author(s):  
Jennifer K. Broome-Smith ◽  
Brian G. Spratt

A strain of Escherichia coli with a deletion of the penicillin-binding protein 6 gene ( dacC ) has been constructed. The properties of this strain establish that the complete lack of penicillin-binding protein 6 has no marked effect on the growth of E. coli .


2007 ◽  
Vol 189 (14) ◽  
pp. 4975-4983 ◽  
Author(s):  
Blaine A. Legaree ◽  
Calvin B. Adams ◽  
Anthony J. Clarke

ABSTRACT Penicillin-binding protein 2 (PBP 2) has long been known to be essential for rod-shaped morphology in gram-negative bacteria, including Escherichia coli and Pseudomonas aeruginosa. In the course of earlier studies with P. aeruginosa PBP 2, we observed that E. coli was sensitive to the overexpression of its gene, pbpA. In this study, we examined E. coli overproducing both P. aeruginosa and E. coli PBP 2. Growth of cells entered a stationary phase soon after induction of gene expression, and cells began to lyse upon prolonged incubation. Concomitant with the growth retardation, cells were observed to have changed morphologically from typical rods into enlarged spheres. Inactive derivatives of the PBP 2s were engineered, involving site-specific replacement of their catalytic Ser residues with Ala in their transpeptidase module. Overproduction of these inactive PBPs resulted in identical effects. Likewise, overproduction of PBP 2 derivatives possessing only their N-terminal non-penicillin-binding module (i.e., lacking their C-terminal transpeptidase module) produced similar effects. However, E. coli overproducing engineered derivatives of PBP 2 lacking their noncleavable, N-terminal signal sequence and membrane anchor were found to grow and divide at the same rate as control cells. The morphological effects and lysis were also eliminated entirely when overproduction of PBP 2 and variants was conducted with E. coli MHD79, a strain lacking six lytic transglycosylases. A possible interaction between the N-terminal domain of PBP 2 and lytic transglycosylases in vivo through the formation of multienzyme complexes is discussed.


2008 ◽  
Vol 53 (3) ◽  
pp. 1238-1241 ◽  
Author(s):  
Tetsufumi Koga ◽  
Chika Sugihara ◽  
Masayo Kakuta ◽  
Nobuhisa Masuda ◽  
Eiko Namba ◽  
...  

ABSTRACT Tomopenem (formerly CS-023), a novel 1β-methylcarbapenem, exhibited high affinity for penicillin-binding protein (PBP) 2 in Staphylococcus aureus, PBP 2 in Escherichia coli, and PBPs 2 and 3 in Pseudomonas aeruginosa, which are considered major lethal targets. Morphologically, tomopenem induced spherical forms in E. coli and short filamentation with bulges in P. aeruginosa, which correlated with the drug's PBP profiles. The potential of resistance of these bacteria to tomopenem was comparable to that to imipenem.


1987 ◽  
Vol 65 (1) ◽  
pp. 62-67
Author(s):  
Fernando Rojo ◽  
José Berenguer ◽  
Juan A. Ayala ◽  
Miguel A. De Pedro

Screening of a number of unrelated strains of Escherichia coli confirms the existence of at least two patterns of molecular forms for penicillin-binding protein 1b in E. coli cell envelopes. Our data support that the β-form of this protein is produced by posttranslational modification of the α-form and suggest that the absence of the β-form in some strains is due to a strain-dependent variability in the α-form processing mechanism.


2020 ◽  
Vol 17 (5) ◽  
pp. 716-724
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Background: The key issue in the development of novel antimicrobials is a rapid expansion of new bacterial strains resistant to current antibiotics. Indeed, World Health Organization has reported that bacteria commonly causing infections in hospitals and in the community, e.g. E. Coli, K. pneumoniae and S. aureus, have high resistance vs the last generations of cephalosporins, carbapenems and fluoroquinolones. During the past decades, only few successful efforts to develop and launch new antibacterial medications have been performed. This study aims to identify new class of antibacterial agents using novel high-throughput screening technique. Methods: We have designed library containing 125K compounds not similar in structure (Tanimoto coeff.< 0.7) to that published previously as antibiotics. The HTS platform based on double reporter system pDualrep2 was used to distinguish between molecules able to block translational machinery or induce SOS-response in a model E. coli system. MICs for most active chemicals in LB and M9 medium were determined using broth microdilution assay. Results: In an attempt to discover novel classes of antibacterials, we performed HTS of a large-scale small molecule library using our unique screening platform. This approach permitted us to quickly and robustly evaluate a lot of compounds as well as to determine the mechanism of action in the case of compounds being either translational machinery inhibitors or DNA-damaging agents/replication blockers. HTS has resulted in several new structural classes of molecules exhibiting an attractive antibacterial activity. Herein, we report as promising antibacterials. Two most active compounds from this series showed MIC value of 1.2 (5) and 1.8 μg/mL (6) and good selectivity index. Compound 6 caused RFP induction and low SOS response. In vitro luciferase assay has revealed that it is able to slightly inhibit protein biosynthesis. Compound 5 was tested on several archival strains and exhibited slight activity against gram-negative bacteria and outstanding activity against S. aureus. The key structural requirements for antibacterial potency were also explored. We found, that the unsubstituted carboxylic group is crucial for antibacterial activity as well as the presence of bulky hydrophobic substituents at phenyl fragment. Conclusion: The obtained results provide a solid background for further characterization of the 5'- (carbonylamino)-2,3'-bithiophene-4'-carboxylate derivatives discussed herein as new class of antibacterials and their optimization campaign.


2016 ◽  
Vol 60 (10) ◽  
pp. 5995-6002 ◽  
Author(s):  
Kristin R. Baker ◽  
Bimal Jana ◽  
Henrik Franzyk ◽  
Luca Guardabassi

ABSTRACTThe envelope of Gram-negative bacteria constitutes an impenetrable barrier to numerous classes of antimicrobials. This intrinsic resistance, coupled with acquired multidrug resistance, has drastically limited the treatment options against Gram-negative pathogens. The aim of the present study was to develop and validate an assay for identifying compounds that increase envelope permeability, thereby conferring antimicrobial susceptibility by weakening of the cell envelope barrier in Gram-negative bacteria. A high-throughput whole-cell screening platform was developed to measureEscherichia colienvelope permeability to a β-galactosidase chromogenic substrate. The signal produced by cytoplasmic β-galactosidase-dependent cleavage of the chromogenic substrate was used to determine the degree of envelope permeabilization. The assay was optimized by using known envelope-permeabilizing compounds andE. coligene deletion mutants with impaired envelope integrity. As a proof of concept, a compound library comprising 36 peptides and 45 peptidomimetics was screened, leading to identification of two peptides that substantially increased envelope permeability. Compound 79 reduced significantly (from 8- to 125-fold) the MICs of erythromycin, fusidic acid, novobiocin and rifampin and displayed synergy (fractional inhibitory concentration index, <0.2) with these antibiotics by checkerboard assays in two genetically distinctE. colistrains, including the high-risk multidrug-resistant, CTX-M-15-producing sequence type 131 clone. Notably, in the presence of 0.25 μM of this peptide, both strains were susceptible to rifampin according to the resistance breakpoints (R> 0.5 μg/ml) for Gram-positive bacterial pathogens. The high-throughput screening platform developed in this study can be applied to accelerate the discovery of antimicrobial helper drug candidates and targets that enhance the delivery of existing antibiotics by impairing envelope integrity in Gram-negative bacteria.


2017 ◽  
Vol 18 (0) ◽  
Author(s):  
Camila Sampaio Cutrim ◽  
Raphael Ferreira de Barros ◽  
Robson Maia Franco ◽  
Marco Antonio Sloboda Cortez

Abstract The purpose of this study was to evaluate the behavior of E. coli O157:H7 during lactose hydrolysis and fermentation of traditional and low lactose yogurt. It also aimed to verify E. coli O157:H7 survival after 12 h of storage at 4 ºC ±1 ºC. Two different types of yogurts were prepared, two with whole milk and two with pre-hydrolyzed whole milk; in both groups one yogurt was inoculated with E. coli O157:H7 and the other one was not inoculated. The survival of E. coli and pH of yogurt were determined during fermentation and after 12-h refrigeration. The results showed that E. coli O157:H7 was able to grow during the fermentation period (from 4.34 log CFU.mL-1 to 6.13 log CFU.mL-1 in traditional yogurt and 4.34 log CFU.mL-1 to 6.16 log CFU.mL-1 in low lactose yogurt). The samples with E. coli O157:H7 showed gas formation and syneresis. Thus, E. coli O157:H7 was able to survive and grow during fermentation of traditional and low lactose yogurts affecting the manufacture technology. Moreover, milk contamination by E. coli before LAB addition reduces the growth of L. bulgaricus and S. thermophilus especially when associated with reduction of lactose content.


Sign in / Sign up

Export Citation Format

Share Document