scholarly journals Outbreak of Klebsiella pneumoniae Producing a New Carbapenem-Hydrolyzing Class A β-Lactamase, KPC-3, in a New York Medical Center

2004 ◽  
Vol 48 (12) ◽  
pp. 4793-4799 ◽  
Author(s):  
Neil Woodford ◽  
Philip M. Tierno ◽  
Katherine Young ◽  
Luke Tysall ◽  
Marie-France I. Palepou ◽  
...  

ABSTRACT From April 2000 to April 2001, 24 patients in intensive care units at Tisch Hospital, New York, N.Y., were infected or colonized by carbapenem-resistant Klebsiella pneumoniae. Pulsed-field gel electrophoresis identified a predominant outbreak strain, but other resistant strains were also recovered. Three representatives of the outbreak strain from separate patients were studied in detail. All were resistant or had reduced susceptibility to imipenem, meropenem, ceftazidime, piperacillin-tazobactam, and gentamicin but remained fully susceptible to tetracycline. PCR amplified a bla KPC allele encoding a novel variant, KPC-3, with a His(272)→Tyr substitution not found in KPC-2; other carbapenemase genes were absent. In the outbreak strain, KPC-3 was encoded by a 75-kb plasmid, which was transferred in vitro by electroporation and conjugation. The isolates lacked the OmpK35 porin but expressed OmpK36, implying reduced permeability as a cofactor in resistance. This is the third KPC carbapenem-hydrolyzing β-lactamase variant to have been reported in members of the Enterobacteriaceae, with others reported from the East Coast of the United States. Although producers of these enzymes remain rare, the progress of this enzyme group merits monitoring.

2010 ◽  
Vol 54 (6) ◽  
pp. 2291-2302 ◽  
Author(s):  
Malcolm G. P. Page ◽  
Clothilde Dantier ◽  
Eric Desarbre

ABSTRACT BAL30072 is a new monocyclic β-lactam antibiotic belonging to the sulfactams. Its spectrum of activity against significant Gram-negative pathogens with β-lactam-resistant phenotypes was evaluated and was compared with the activities of reference drugs, including aztreonam, ceftazidime, cefepime, meropenem, imipenem, and piperacillin-tazobactam. BAL30072 showed potent activity against multidrug-resistant (MDR) Pseudomonas aeruginosa and Acinetobacter sp. isolates, including many carbapenem-resistant strains. The MIC90s were 4 μg/ml for MDR Acinetobacter spp. and 8 μg/ml for MDR P. aeruginosa, whereas the MIC90 of meropenem for the same sets of isolates was >32 μg/ml. BAL30072 was bactericidal against both Acinetobacter spp. and P. aeruginosa, even against strains that produced metallo-β-lactamases that conferred resistance to all other β-lactams tested, including aztreonam. It was also active against many species of MDR isolates of the Enterobacteriaceae family, including isolates that had a class A carbapenemase or a metallo-β-lactamase. Unlike other monocyclic β-lactams, BAL30072 was found to trigger the spheroplasting and lysis of Escherichia coli rather than the formation of extensive filaments. The basis for this unusual property is its inhibition of the bifunctional penicillin-binding proteins PBP 1a and PBP 1b, in addition to its high affinity for PBP 3, which is the target of monobactams, such as aztreonam.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S93-S94
Author(s):  
Cecilia G Carvalhaes ◽  
Mariana Castanheira ◽  
Rodrigo E Mendes ◽  
Helio S Sader

Abstract Background We evaluated the antimicrobial susceptibility of Enterobacterales (ENT) and P. aeruginosa (PSA) causing bloodstream infections (BSIs) in the United States (US) hospitals. Methods A total of 3,317 ENT and 331 PSA isolates were consecutively collected (1/patient) from patients with BSI in 68 US medical centers in 2017–2018 and tested for susceptibility (S) by reference broth microdilution methods in a central laboratory as part of the International Network for Optimal Resistance Monitoring (INFORM) Program. β-Lactamase screening was performed by whole-genome sequencing on ENT with decreased S to broad-spectrum cephalosporins (ESBL phenotype). Results The most common ENT species isolated from BSI were E. coli (EC; 41.9% of ENT), K. pneumoniae (KPN; 24.4%), and E. cloacae (ECL; 8.7%), and the most active agents against ENT were ceftazidime–avibactam (CAZ-AVI; 99.9%S), amikacin (AMK; 99.6%S) and meropenem (MEM; 99.3%S). CAZ-AVI was active against all EC and KPN isolates (100.0%S). Only 2 ENT isolates (0.06%) were CAZ-AVI resistant, 2 NDM-1-producing ECL isolated in the New York City area. Ceftolozane–tazobactam (C-T) and piperacillin–tazobactam (PIP-TAZ) showed good activity against EC and KPN (92.2–98.9%S; Table), with limited activity against ECL (81.9–83.7%S). The most common ESBLs were CTX-M-type, which was observed in 93% of ESBL producers (mainly CTX-M-15 [64% of ESBL producers] and CTX-M-27 [13%]), and OXA-1/OXA-30 (42%); 42% of ESBL producers (n = 333, excluding carbapenemase producers) displayed ≥2 ESBL genes, mainly CTX-M-15 and OXA-1/OXA-30 (40% of ESBL producers). The most active agents against ESBL producers were CAZ-AVI (100.0%S), imipenem (99.4%S), and colistin (COL; 99.1%S). Only CAZ-AVI (99.4%S), AMK (96.2%S) and MEM (92.8%S) were active against >90% of multidrug-resistant (MDR) ENT. Among 19 carbapenem-resistant ENT (CRE; 0.6% of ENT), 9 produced a KPC-like, 2 an NDM-1, and 2 an NMC-A; carbapenemase genes were not found in 6 CRE isolates. COL (100.0%S), CAZ-AVI (98.5%S), AMK (98.5%S), C-T (98.1%S), and tobramycin (97.0%S) were very active against PSA. Conclusion CAZ-AVI exhibited potent in vitro activity and great spectrum against ENT (99.9%S) and PSA (98.5%) isolated from patients with BSI from US hospitals. Disclosures All authors: No reported disclosures.


2011 ◽  
Vol 55 (12) ◽  
pp. 5893-5899 ◽  
Author(s):  
Michael J. Satlin ◽  
Christine J. Kubin ◽  
Jill S. Blumenthal ◽  
Andrew B. Cohen ◽  
E. Yoko Furuya ◽  
...  

ABSTRACTCarbapenem-resistantKlebsiella pneumoniae(CRKP) is an increasingly common cause of health care-associated urinary tract infections. Antimicrobials within vitroactivity against CRKP are typically limited to polymyxins, tigecycline, and often, aminoglycosides. We conducted a retrospective cohort study of cases of CRKP bacteriuria at New York-Presbyterian Hospital from January 2005 through June 2010 to compare microbiologic clearance rates based on the use of polymyxin B, tigecycline, or an aminoglycoside. We constructed three active antimicrobial cohorts based on the active agent used and an untreated cohort of cases that did not receive antimicrobial therapy with Gram-negative activity. Microbiologic clearance was defined as having a follow-up urine culture that did not yield CRKP. Cases without an appropriate follow-up culture or that received multiple active agents or less than 3 days of the active agent were excluded. Eighty-seven cases were included in the active antimicrobial cohorts, and 69 were included in the untreated cohort. The microbiologic clearance rate was 88% in the aminoglycoside cohort (n= 41), compared to 64% in the polymyxin B (P= 0.02;n= 25), 43% in the tigecycline (P< 0.001;n= 21), and 36% in the untreated (P< 0.001;n= 69) cohorts. Using multivariate analysis, the odds of clearance were lower for the polymyxin B (odds ratio [OR], 0.10;P= 0.003), tigecycline (OR, 0.08;P= 0.001), and untreated (OR, 0.14;P= 0.003) cohorts than for the aminoglycoside cohort. Treatment with an aminoglycoside, when activein vitro, was associated with a significantly higher rate of microbiologic clearance of CRKP bacteriuria than treatment with either polymyxin B or tigecycline.


2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Melissa D. Barnes ◽  
Magdalena A. Taracila ◽  
Caryn E. Good ◽  
Saralee Bajaksouzian ◽  
Laura J. Rojas ◽  
...  

ABSTRACT Carbapenem-resistant Enterobacteriaceae (CRE) are resistant to most antibiotics, making CRE infections extremely difficult to treat with available agents. Klebsiella pneumoniae carbapenemases (KPC-2 and KPC-3) are predominant carbapenemases in CRE in the United States. Nacubactam is a bridged diazabicyclooctane (DBO) β-lactamase inhibitor that inactivates class A and C β-lactamases and exhibits intrinsic antibiotic and β-lactam “enhancer” activity against Enterobacteriaceae. In this study, we examined a collection of meropenem-resistant K. pneumoniae isolates carrying blaKPC-2 or blaKPC-3; meropenem-nacubactam restored susceptibility. Upon testing isogenic Escherichia coli strains producing KPC-2 variants with single-residue substitutions at important Ambler class A positions (K73, S130, R164, E166, N170, D179, K234, E276, etc.), the K234R variant increased the meropenem-nacubactam MIC compared to that for the strain producing KPC-2, without increasing the meropenem MIC. Correspondingly, nacubactam inhibited KPC-2 (apparent Ki [Ki app] = 31 ± 3 μM) more efficiently than the K234R variant (Ki app = 270 ± 27 μM) and displayed a faster acylation rate (k2/K), which was 5,815 ± 582 M−1 s−1 for KPC-2 versus 247 ± 25 M−1 s−1 for the K234R variant. Unlike avibactam, timed mass spectrometry revealed an intact sulfate on nacubactam and a novel peak (+337 Da) with the K234R variant. Molecular modeling of the K234R variant showed significant catalytic residue (i.e., S70, K73, and S130) rearrangements that likely interfere with nacubactam binding and acylation. Nacubactam’s aminoethoxy tail formed unproductive interactions with the K234R variant’s active site. Molecular modeling and docking observations were consistent with the results of biochemical analyses. Overall, the meropenem-nacubactam combination is effective against carbapenem-resistant K. pneumoniae. Moreover, our data suggest that β-lactamase inhibition by nacubactam proceeds through an alternative mechanism compared to that for avibactam.


2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Michael R. Jacobs ◽  
Caryn E. Good ◽  
Andrea M. Hujer ◽  
Ayman M. Abdelhamed ◽  
Daniel D. Rhoads ◽  
...  

ABSTRACT Plazomicin was tested against 697 recently acquired carbapenem-resistant Klebsiella pneumoniae isolates from the Great Lakes region of the United States. Plazomicin MIC50 and MIC90 values were 0.25 and 1 mg/liter, respectively; 680 isolates (97.6%) were susceptible (MICs of ≤2 mg/liter), 9 (1.3%) intermediate (MICs of 4 mg/liter), and 8 (1.1%) resistant (MICs of >32 mg/liter). Resistance was associated with rmtF-, rmtB-, or armA-encoded 16S rRNA methyltransferases in all except 1 isolate.


2018 ◽  
Vol 12 (03) ◽  
pp. 164-170 ◽  
Author(s):  
George Farah Araj ◽  
Aline Z Avedissian ◽  
Lina Y Itani ◽  
Jowana A Obeid

Introduction: It is not yet clear which antimicrobial agents should be used to treat the ominously increasing infections with carbapenem-resistant (CR) bacteria. We therefore investigated the activity of different antimicrobial agents against CR Escherichia coli and Klebsiella pneumoniae in Lebanon. Methodology: This retrospective study assessed the minimum inhibitory concentrations (MICs) of three carbapenems (by Etest), as well as the in vitro activity of eight other antimicrobials (by disk diffusion) against CR E. coli (n = 300) and K. pneumoniae (n = 232) isolates recovered at a major University Medical Center in Lebanon. Results: Higher percentages of isolates showing carbapenem MICs of ≤ 8 µg/mL were noted among the CR E. coli compared to the CR K. pneumoniae for ertapenem (48% vs 27%), imipenem (74 % vs 58%) and meropenem (82% vs 63%). Among the eight other antimicrobials, activity was generally higher when the MICs for the three carbapenems were ≤ 8 µg/mL. Regardless of the MIC level of the three carbapenems, very low susceptibility rates (≤ 33%) were noted for ciprofloxacin, trimethoprim-sulfamethoxazole and aztreonam against both E. coli and K. pneumoniae isolates. With Amikacin, higher susceptibility rates were seen against E. coli isolates (81%-97%) than against K. pneumoniae isolates (55%-86%), also reflecting higher activity than gentamicin (44%-54%). The best activity (66%-100%) was observed for tigecycline, colistin and fosfomycin against both CR species. Conclusions: Based on the in vitro findings in this study, the combination of a carbapenem showing an MIC of ≤ 8 µg/mL together with an active colistin, tigecycline, or fosfomycin, would offer a promising treatment option for patients infected with CR E. coli or K. pneumoniae.


2018 ◽  
Vol 56 (9) ◽  
Author(s):  
Fangyou Yu ◽  
Jingnan Lv ◽  
Siqiang Niu ◽  
Hong Du ◽  
Yi-Wei Tang ◽  
...  

ABSTRACT Carbapenem-resistant and hypervirulent Klebsiella pneumoniae strains have emerged recently. These strains are both hypervirulent and multidrug resistant and may also be highly transmissible and able to cause severe infections in both the hospital and the community. Clinical and public health needs require a rapid and comprehensive molecular detection assay to identify and track the spread of these strains and provide timely infection control information. Here, we develop a rapid multiplex PCR assay capable of distinguishing K. pneumoniae carbapenem-resistant isolates of sequence type 258 (ST258) and ST11, and hypervirulent ST23, ST65/ST375, and ST86 clones, as well as capsular types K1, K2, K locus type 47 (KL47), and KL64, and virulence genes rmpA, rmpA2, iutA, and iroN. The assay demonstrated 100% concordance with 118 previously genotyped K. pneumoniae isolates and revealed different populations of carbapenem-resistant and hypervirulent strains in two collections in China and the United States. The results showed that carbapenem-resistant and hypervirulent K. pneumoniae strains are still rare in the United States, whereas in China, ∼50% of carbapenem-resistant strains carry rmpA/rmpA2 and iutA virulence genes, which are largely associated with the epidemic ST11 strains. Similarly, a high prevalence of hypervirulent strains was found in carbapenem-susceptible isolates in two Chinese hospitals, but these primarily belong to ST23, ST65/ST375, and ST86, which are distinct from the carbapenem-resistant strains. Taken together, our results demonstrated that this PCR assay can be a useful tool for molecular surveillance of carbapenem-resistant and hypervirulent K. pneumoniae strains.


Author(s):  
Katariina Koskinen ◽  
Reetta Penttinen ◽  
Anni-Maria Örmälä-Odegrip ◽  
Christian G. Giske ◽  
Tarmo Ketola ◽  
...  

Over the past few decades, extensively drug resistant (XDR) resistant Klebsiella pneumoniae has become a notable burden to healthcare all over the world. Especially carbapenemase-producing strains are problematic due to their capability to withstand even last resort antibiotics. Some sequence types (STs) of K. pneumoniae are significantly more prevalent in hospital settings in comparison to other equally resistant strains. This provokes the question whether or not there are phenotypic characteristics that may render certain K. pneumoniae more suitable for epidemic dispersal between patients, hospitals, and different environments. In this study, we selected seven epidemic and non-epidemic carbapenem resistant K. pneumoniae isolates for extensive systematic characterization for phenotypic and genotypic qualities in order to identify potential factors that precede or emerge from epidemic successfulness. Studied characteristics include growth rates and densities in different conditions (media, temperature, pH, resource levels), tolerance to alcohol and drought, inhibition between strains, ability to compensate pH, as well as various genomic features. Overall, there are clear differences between isolates, yet, only drought tolerance was found to notably associate with non-epidemic K. pneumoniae strains. We further report a preliminary study on the potential to control K. pneumoniae ST11 with an antimicrobial component produced by a non-epidemic K. pneumoniae. This component initially restricts bacterial growth, but stable resistance develops rapidly in vitro.


2007 ◽  
Vol 51 (8) ◽  
pp. 3026-3029 ◽  
Author(s):  
Azita Leavitt ◽  
Shiri Navon-Venezia ◽  
Inna Chmelnitsky ◽  
Mitchell J. Schwaber ◽  
Yehuda Carmeli

ABSTRACT Carbapenem resistance due to KPC has rarely been observed outside the United States. We noticed a sharp increase in carbapenem-resistant Klebsiella pneumoniae strains possessing KPC in Tel Aviv Medical Center from 2004 to 2006. Sixty percent of the isolates belonged to a single clone susceptible only to gentamicin and colistin and carried the bla KPC-3 gene, while almost all other clones carried the bla KPC-2 gene. This rapid dissemination of KPC outside the United States is worrisome.


2006 ◽  
Vol 51 (2) ◽  
pp. 763-765 ◽  
Author(s):  
Ze-Qing Wei ◽  
Xiao-Xing Du ◽  
Yun-Song Yu ◽  
Ping Shen ◽  
Ya-Gang Chen ◽  
...  

ABSTRACT A carbapenem-resistant isolate of Klebsiella pneumoniae producing class A carbapenemase KPC-2 was identified in Zhejiang, China. The KPC-2 gene was located on an approximately 60-kb plasmid in a genetic environment partially different from that of bla KPC-2 in the isolates from the United States and Colombia.


Sign in / Sign up

Export Citation Format

Share Document