scholarly journals Activity of the new fluoroquinolone trovafloxacin (CP-99,219) against DNA gyrase and topoisomerase IV mutants of Streptococcus pneumoniae selected in vitro.

1996 ◽  
Vol 40 (12) ◽  
pp. 2691-2697 ◽  
Author(s):  
T D Gootz ◽  
R Zaniewski ◽  
S Haskell ◽  
B Schmieder ◽  
J Tankovic ◽  
...  

The MICs of trovafloxacin, ciprofloxacin, ofloxacin, and sparfloxacin at which 90% of isolates are inhibited for 55 isolates of pneumococci were 0.125, 1, 4, and 0.5 microgram/ml, respectively. Resistant mutants of two susceptible isolates were selected in a stepwise fashion on agar containing ciprofloxacin at 2 to 10 times the MIC. While no mutants were obtained at the highest concentration tested, mutants were obtained at four times the MIC of ciprofloxacin (4 micrograms/ml) at a frequency of 1.0 x 10(-9). Ciprofloxacin MICs for these first-step mutants ranged from 4 to 8 micrograms/ml, whereas trovafloxacin MICs were 0.25 to 0.5 microgram/ml. Amplification of the quinolone resistance-determining region of the grlA (parC; topoisomerase IV) and gyrA (DNA gyrase) genes of the parents and mutants revealed that changes of the serine at position 80 (Ser80) to Phe or Tyr (Staphylococcus aureus coordinates) in GrlA were associated with resistance to ciprofloxacin. Second-step mutants of these isolates were selected by plating the isolates on medium containing ciprofloxacin at 32 micrograms/ml. Mutants for which ciprofloxacin MICs were 32 to 256 micrograms/ml and trovafloxacin MICs were 4 to 16 micrograms/ml were obtained at a frequency of 1.0 x 10(-9). Second-step mutants also had a change in GyrA corresponding to a substitution in Ser84 to Tyr or Phe or in Glu88 to Lys. Trovafloxacin protected from infection mice whose lungs were inoculated with lethal doses of either the parent strain or the first-step mutant. These results indicate that resistance to fluoroquinolones in S. pneumoniae occurs in vitro at a low frequency, involving sequential mutations in topoisomerase IV and DNA gyrase. Trovafloxacin MICs for wild-type and first-step mutants are within clinically achievable levels in the blood and lungs of humans.

1998 ◽  
Vol 42 (8) ◽  
pp. 1917-1922 ◽  
Author(s):  
Hideyuki Fukuda ◽  
Satoshi Hori ◽  
Keiichi Hiramatsu

ABSTRACT Alternate mutations in the grlA and gyrAgenes were observed through the first- to fourth-step mutants which were obtained from four Staphylococcus aureus strains by sequential selection with several fluoroquinolones. The increases in the MICs of gatifloxacin accompanying those mutational steps suggest that primary targets of gatifloxacin in the wild type and the first-, second-, and third-step mutants are wild-type topoisomerase IV (topo IV), wild-type DNA gyrase, singly mutated topo IV, and singly mutated DNA gyrase, respectively. Gatifloxacin had activity equal to that of tosufloxacin and activity more potent than those of norfloxacin, ofloxacin, ciprofloxacin, and sparfloxacin against the second-step mutants (grlA gyrA; gatifloxacin MIC range, 1.56 to 3.13 μg/ml) and had the most potent activity against the third-step mutants (grlA gyrA grlA; gatifloxacin MIC range, 1.56 to 6.25 μg/ml), suggesting that gatifloxacin possesses the most potent inhibitory activity against singly mutated topo IV and singly mutated DNA gyrase among the quinolones tested. Moreover, gatifloxacin selected resistant mutants from wild-type and the second-step mutants at a low frequency. Gatifloxacin possessed potent activity (MIC, 0.39 μg/ml) against the NorA-overproducing strain S. aureus NY12, thenorA transformant, which was slightly lower than that against the parent strain SA113. The increases in the MICs of the quinolones tested against NY12 were negatively correlated with the hydrophobicity of the quinolones (correlation coefficient, −0.93;P < 0.01). Therefore, this slight decrease in the activity of gatifloxacin is attributable to its high hydrophobicity. Those properties of gatifloxacin likely explain its good activity against quinolone-resistant clinical isolates of S. aureusharboring the grlA, gyrA, and/ornorA mutations.


2000 ◽  
Vol 44 (11) ◽  
pp. 3112-3117 ◽  
Author(s):  
Victoria J. Heaton ◽  
Jane E. Ambler ◽  
L. Mark Fisher

ABSTRACT We investigated the roles of DNA gyrase and topoisomerase IV in determining the susceptibility of Streptococcus pneumoniaeto gemifloxacin, a novel fluoroquinolone which is under development as an antipneumococcal drug. Gemifloxacin displayed potent activity against S. pneumoniae 7785 (MIC, 0.06 μg/ml) compared with ciprofloxacin (MIC, 1 to 2 μg/ml). Complementary genetic and biochemical approaches revealed the following. (i) The gemifloxacin MICs for isogenic 7785 mutants bearing either parC orgyrA quinolone resistance mutations were marginally higher than wild type at 0.12 to 0.25 μg/ml, whereas the presence of both mutations increased the MIC to 0.5 to 1 μg/ml. These data suggest that both gyrase and topoisomerase IV contribute significantly as gemifloxacin targets in vivo. (ii) Gemifloxacin selected first-stepgyrA mutants of S. pneumoniae 7785 (gemifloxacin MICs, 0.25 μg/ml) encoding Ser-81 to Phe or Tyr, or Glu-85 to Lys mutations. These mutants were cross resistant to sparfloxacin (which targets gyrase) but not to ciprofloxacin (which targets topoisomerase IV). Second-step mutants (gemifloxacin MICs, 1 μg/ml) exhibited an alteration in parC resulting in changes of ParC hot spot Ser-79 to Phe or Tyr. Thus, gyrase appears to be the preferential in vivo target. (iii) Gemifloxacin was at least 10- to 20-fold more effective than ciprofloxacin in stabilizing a cleavable complex (the cytotoxic lesion) with either S. pneumoniaegyrase or topoisomerase IV enzyme in vitro. These data suggest that gemifloxacin is an enhanced affinity fluoroquinolone that acts against gyrase and topoisomerase IV in S. pneumoniae, with gyrase the preferred in vivo target. The marked potency of gemifloxacin against wild type and quinolone-resistant mutants may accrue from greater stabilization of cleavable complexes with the target enzymes.


2002 ◽  
Vol 46 (6) ◽  
pp. 1651-1657 ◽  
Author(s):  
Mark E. Jones ◽  
Ian A. Critchley ◽  
James A. Karlowsky ◽  
Renée S. Blosser-Middleton ◽  
Franz-Josef Schmitz ◽  
...  

ABSTRACT Two 8-methoxy nonfluorinated quinolones (NFQs), PGE 9262932 and PGE 9509924, were tested against contemporary clinical isolates of Staphylococcus aureus (n = 122) and Streptococcus pneumoniae (n = 69) with genetically defined quinolone resistance-determining regions (QRDRs). For S. aureus isolates with wild-type (WT) sequences at the QRDRs, the NFQs demonstrated activities 4- to 32-fold more potent (MICs at which 90% of isolates are inhibited [MIC90s], 0.03 μg/ml) than those of moxifloxacin (MIC90, 0.12 μg/ml), gatifloxacin (MIC90, 0.25 μg/ml), levofloxacin (MIC90, 0.25 μg/ml), and ciprofloxacin (MIC90, 1 μg/ml). Against S. pneumoniae isolates with WT sequences at gyrA and parC, the NFQs PGE 9262932 (MIC90, 0.03 μg/ml) and PGE 9509924 (MIC90, 0.12 μg/ml) were 8- to 64-fold and 2- to 16-fold more potent, respectively, than moxifloxacin (MIC90, 0.25 μg/ml), gatifloxacin (MIC90, 0.5 μg/ml), levofloxacin (MIC90, 2 μg/ml), and ciprofloxacin (MIC90, 2 μg/ml). The MICs of all agents were elevated for S. aureus isolates with alterations in GyrA (Glu88Lys or Ser84Leu) and GrlA (Ser80Phe) and S. pneumoniae isolates with alterations in GyrA (Ser81Phe or Ser81Tyr) and ParC (Ser79Phe or Lys137Asn). Fluoroquinolone MICs for S. aureus strains with double alterations in GyrA combined with double alterations in GrlA were ≥32 μg/ml, whereas the MICs of the NFQs for strains with these double alterations were 4 to 8 μg/ml. The PGE 9262932 and PGE 9509924 MICs for the S. pneumoniae isolates did not exceed 0.5 and 1 μg/ml, respectively, even for isolates with GyrA (Ser81Phe) and ParC (Ser79Phe) alterations, for which levofloxacin MICs were >16 μg/ml. No difference in the frequency of selection of mutations (<10−8 at four times the MIC) in wild-type or first-step mutant isolates of S. aureus or S. pneumoniae was detected for the two NFQs. On the basis of their in vitro activities, these NFQ agents show potential for the treatment of infections caused by isolates resistant to currently available fluoroquinolones.


1996 ◽  
Vol 40 (12) ◽  
pp. 2714-2720 ◽  
Author(s):  
F Blanche ◽  
B Cameron ◽  
F X Bernard ◽  
L Maton ◽  
B Manse ◽  
...  

Staphylococcus aureus gyrA and gyrB genes encoding DNA gyrase subunits were cloned and coexpressed in Escherichia coli under the control of the T7 promoter-T7 RNA polymerase system, leading to soluble gyrase which was purified to homogeneity. Purified gyrase was catalytically indistinguishable from the gyrase purified from S. aureus and did not contain detectable amounts of topoisomerases from the E. coli host. Topoisomerase IV subunits GrlA and GrlB from S. aureus were also expressed in E. coli and were separately purified to apparent homogeneity. Topoisomerase IV, which was reconstituted by mixing equimolar amounts of GrlA and GrlB, had both ATP-dependent decatenation and DNA relaxation activities in vitro. This enzyme was more sensitive than gyrase to inhibition by typical fluoroquinolone antimicrobial agents such as ciprofloxacin or sparfloxacin, adding strong support to genetic studies which indicate that topoisomerase IV is the primary target of fluoroquinolones in S. aureus. The results obtained with ofloxacin suggest that this fluoroquinolone could also primarily target gyrase. No cleavable complex could be detected with S. aureus gyrase upon incubation with ciprofloxacin or sparfloxacin at concentrations which fully inhibit DNA supercoiling. This suggests that these drugs do not stabilize the open DNA-gyrase complex, at least under standard in vitro incubation conditions, but are more likely to interfere primarily with the DNA breakage step, contrary to what has been reported with E. coli gyrase. Both S. aureus gyrase-catalyzed DNA supercoiling and S. aureus topoisomerase IV-catalyzed decatenation were dramatically stimulated by potassium glutamate or aspartate (500- and 50-fold by 700 and 350 mM glutamate, respectively), whereas topoisomerase IV-dependent DNA relaxation was inhibited 3-fold by 350 mM glutamate. The relevance of the effect of dicarboxylic amino acids on the activities of type II topoisomerases is discussed with regard to the intracellular osmolite composition of S. aureus.


2005 ◽  
Vol 49 (2) ◽  
pp. 488-492 ◽  
Author(s):  
Fatemeh Rafii ◽  
Miseon Park ◽  
John S. Novak

ABSTRACT To compare mutations in the DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE) genes of Clostridium perfringens, which are associated with in vitro exposure to fluoroquinolones, resistant mutants were selected from eight strains by serial passage in the presence of increasing concentrations of norfloxacin, ciprofloxacin, gatifloxacin, or trovafloxacin. The nucleotide sequences of the entire gyrA, gyrB, parC, and parE genes of 42 mutants were determined. DNA gyrase was the primary target for each fluoroquinolone, and topoisomerase IV was the secondary target. Most mutations appeared in the quinolone resistance-determining regions of gyrA (resulting in changes of Asp-87 to Tyr or Gly-81 to Cys) and parC (resulting in changes of Asp-93 or Asp-88 to Tyr or Ser-89 to Ile); only two mutations were found in gyrB, and only two mutations were found in parE. More mutants with multiple gyrA and parC mutations were produced with gatifloxacin than with the other fluoroquinolones tested. Allelic diversity was observed among the resistant mutants, for which the drug MICs increased 2- to 256-fold. Both the structures of the drugs and their concentrations influenced the selection of mutants.


2008 ◽  
Vol 52 (7) ◽  
pp. 2313-2323 ◽  
Author(s):  
Gregory T. Robertson ◽  
Eric J. Bonventre ◽  
Timothy B. Doyle ◽  
Qun Du ◽  
Leonard Duncan ◽  
...  

ABSTRACT Rifamycins have proven efficacy in the treatment of persistent bacterial infections. However, the frequency with which bacteria develop resistance to rifamycin agents restricts their clinical use to antibiotic combination regimens. In a program directed toward the synthesis of rifamycins with a lower propensity to elicit resistance development, a series of compounds were prepared that covalently combine rifamycin and quinolone pharmacophores to form stable hybrid antibacterial agents. We describe mode-of-action studies with Staphylococcus aureus of CBR-2092, a novel hybrid that combines the rifamycin SV and 4H-4-oxo-quinolizine pharmacophores. In biochemical studies, CBR-2092 exhibited rifampin-like potency as an inhibitor of RNA polymerase, was an equipotent (balanced) inhibitor of DNA gyrase and DNA topoisomerase IV, and retained activity against a prevalent quinolone-resistant variant. Macromolecular biosynthesis studies confirmed that CBR-2092 has rifampin-like effects on RNA synthesis in rifampin-susceptible strains and quinolone-like effects on DNA synthesis in rifampin-resistant strains. Studies of mutant strains that exhibited reduced susceptibility to CBR-2092 further substantiated RNA polymerase as the primary cellular target of CBR-2092, with DNA gyrase and DNA topoisomerase IV being secondary and tertiary targets, respectively, in strains exhibiting preexisting rifampin resistance. In contrast to quinolone comparator agents, no strains with altered susceptibility to CBR-2092 were found to exhibit changes consistent with altered efflux properties. The combined data indicate that CBR-2092 may have potential utility in monotherapy for the treatment of persistent S. aureus infections.


2000 ◽  
Vol 44 (7) ◽  
pp. 1825-1831 ◽  
Author(s):  
Peter S. Margolis ◽  
Corinne J. Hackbarth ◽  
Dennis C. Young ◽  
Wen Wang ◽  
Dawn Chen ◽  
...  

ABSTRACT Peptide deformylase, a bacterial enzyme, represents a novel target for antibiotic discovery. Two deformylase homologs, defA and defB, were identified inStaphylococcus aureus. The defA homolog, located upstream of the transformylase gene, was identified by genomic analysis and was cloned from chromosomal DNA by PCR. A distinct homolog, defB, was cloned from an S. aureus genomic library by complementation of the arabinose-dependent phenotype of a P BAD -def Escherichia coli strain grown under arabinose-limiting conditions. Overexpression in E. coli of defB, but not defA, correlated to increased deformylase activity and decreased susceptibility to actinonin, a deformylase-specific inhibitor. ThedefB gene could not be disrupted in wild-type S. aureus, suggesting that this gene, which encodes a functional deformylase, is essential. In contrast, thedefA gene could be inactivated; the function of this gene is unknown. Actinonin-resistant mutants grew slowly in vitro and did not show cross-resistance to other classes of antibiotics. When compared to the parent, an actinonin-resistant strain produced an attenuated infection in a murine abscess model, indicating that this strain also has a growth disadvantage in vivo. Sequence analysis of the actinonin-resistant mutants revealed that each harbors a loss-of-function mutation in the fmt gene. Susceptibility to actinonin was restored when the wild-type fmt gene was introduced into these mutant strains. An S. aureusΔfmt strain was also resistant to actinonin, suggesting that a functional deformylase activity is not required in a strain that lacks formyltransferase activity. Accordingly, thedefB gene could be disrupted in an fmt mutant.


1996 ◽  
Vol 40 (5) ◽  
pp. 1157-1163 ◽  
Author(s):  
J Yamagishi ◽  
T Kojima ◽  
Y Oyamada ◽  
K Fujimoto ◽  
H Hattori ◽  
...  

A 4.2-kb DNA fragment conferring quinolone resistance was cloned from a quinolone-resistant clinical isolate of Staphylococcus aureus and was shown to possess a part of the grlB gene and a mutated grlA gene. S-80-->F and E-84-->K mutations in the grlA gene product were responsible for the quinolone resistance. The mutated grlA genes responsible for quinolone resistance were dominant over the wild-type allele, irrespective of gene dosage in a transformation experiment with the grlA gene alone. However, dominance by mutated grlA genes depended on gene dosage when bacteria were transformed with the grlA and grlB genes in combination. Quinolone-resistant gyrA mutants were easily isolated from a strain, S. aureus RN4220, carrying a plasmid with the mutated grlA gene, though this was not the case for other S. aureus strains lacking the plasmid. The elimination of this plasmid from such quinolone-resistant gyrA mutants resulted in marked increases in quinolone susceptibility. These results suggest that both DNA gyrase and DNA topoisomerase IV may be targets of quinolones and that the quinolone susceptibility of organisms may be determined by which of these enzymes is most quinolone sensitive.


2001 ◽  
Vol 45 (6) ◽  
pp. 1649-1653 ◽  
Author(s):  
Hideyuki Fukuda ◽  
Ryuta Kishii ◽  
Masaya Takei ◽  
Masaki Hosaka

ABSTRACT Gatifloxacin (8-methoxy, 7-piperazinyl-3′-methyl) at the MIC selected mutant strains that possessed gyrA mutations at a low frequency (3.7 × 10−9) from wild-type strainStreptococcus pneumoniae IID553. AM-1147 (8-methoxy, 7-piperazinyl-3′-H) at the MIC or higher concentrations selected no mutant strains. On the other hand, the respective 8-H counterparts of these two compounds, AM-1121 (8-H, 7-piperazinyl-3′-methyl) and ciprofloxacin (8-H, 7-piperazinyl-3′-H), at one and two times the MIC selected mutant strains that possessed parC mutations at a high frequency (>2.4 × 10−6). The MIC of AM-1147 increased for the gyrA mutant strains but not for theparC mutant strains compared with that for the wild-type strain. These results suggest that fluoroquinolones that harbor 8-methoxy groups select mutant strains less frequently and prefer DNA gyrase, as distinct from their 8-H counterparts. The in vitro activities of gatifloxacin and AM-1147 are twofold higher against the wild-type strain, eight- and twofold higher against the first-stepparC and gyrA mutant strains, respectively, and two- to eightfold higher against the second-step gyrA andparC double mutant strains than those of their 8-H counterparts. These results indicate that the 8-methoxy group contributes to enhancement of antibacterial activity against target-altered mutant strains as well as the wild-type strain. It is hypothesized that the 8-methoxy group of gatifloxacin increases the level of target inhibition, especially against DNA gyrase, so that it is nearly the same as that for topoisomerase IV inhibition in the bacterial cell, leading to potent antibacterial activity and a low level of resistance selectivity.


2002 ◽  
Vol 46 (6) ◽  
pp. 1800-1804 ◽  
Author(s):  
Yoshikuni Onodera ◽  
Jun Okuda ◽  
Mayumi Tanaka ◽  
Kenichi Sato

ABSTRACT We have cloned the DNA gyrase and topoisomerase IV genes of Enterococcus faecalis to examine the actions of quinolones against E. faecalis genetically and enzymatically. We first generated levofloxacin-resistant mutants of E. faecalis by stepwise selection with increasing drug concentrations and analyzed the quinolone resistance-determining regions of gyrA and parC from the resistant mutants. Isogenic mutants with low-level resistance contained a mutation in gyrA, whereas those with higher levels of resistance had mutations in both gyrA and parC. These results suggested that gyrA is the primary target for levofloxacin in E. faecalis. We then purified the recombinant DNA gyrase and topoisomerase IV enzymes of E. faecalis and measured the in vitro inhibitory activities of quinolones against these enzymes. The 50% inhibitory concentrations (IC50s) of levofloxacin, ciprofloxacin, sparfloxacin, tosufloxacin, and gatifloxacin for DNA gyrase were found to be higher than those for topoisomerase IV. In conflict with the genetic data, these results indicated that topoisomerase IV would be the primary target for quinolones in E. faecalis. Among the quinolones tested, the IC50 of sitafloxacin (DU-6859a), which shows the greatest potency against enterococci, for DNA gyrase was almost equal to that for topoisomerase IV; its IC50s were the lowest among those of all the quinolones tested. These results indicated that other factors can modulate the effect of target affinity to determine the bacterial killing pathway, but the highest inhibitory actions against both enzymes correlated with good antienterococcal activities.


Sign in / Sign up

Export Citation Format

Share Document