scholarly journals Chickens and Cattle as Sources of Sporadic Domestically Acquired Campylobacter jejuni Infections in Finland

2009 ◽  
Vol 75 (16) ◽  
pp. 5244-5249 ◽  
Author(s):  
Marjaana Hakkinen ◽  
Ulla-Maija Nakari ◽  
Anja Siitonen

ABSTRACT A substantial sampling among domestic human campylobacter cases, chicken process lots, and cattle at slaughter was performed during the seasonal peak of human infections. Campylobacter jejuni isolates (n = 419) were subtyped using pulsed-field gel electrophoresis with SmaI, and isolates representing overlapping types (n = 212) were further subtyped using KpnI for restriction. The SmaI/KpnI profiles of 55.4% (97/175) of the human isolates were indistinguishable from those of the chicken or cattle isolates. The overlapping SmaI/KpnI subtypes accounted for 69.8% (30/43) and 15.9% (32/201) of the chicken and cattle isolates, respectively. The occurrence of identical SmaI/KpnI subtypes with human C. jejuni isolates was significantly associated with animal host species (P < 0.001). A temporal association of isolates from chickens and patients was possible in 31.4% (55/175) of the human infections. Besides chickens as sources of C. jejuni in the sporadic infections, the role of cattle appears notable. New approaches to restrict the occurrence of campylobacters in other farm animals may be needed in addition to hygienic measures in chicken production. However, only about half of the human infections were attributable to these sources.

2004 ◽  
Vol 70 (7) ◽  
pp. 3877-3883 ◽  
Author(s):  
P. L. Connerton ◽  
C. M. Loc Carrillo ◽  
C. Swift ◽  
E. Dillon ◽  
A. Scott ◽  
...  

ABSTRACT A longitudinal study of bacteriophages and their hosts was carried out at a broiler house that had been identified as having a population of Campylobacter-specific bacteriophages. Cloacal and excreta samples were collected from three successive broiler flocks reared in the same barn. Campylobacter jejuni was isolated from each flock, whereas bacteriophages could be isolated from flocks 1 and 2 but were not isolated from flock 3. The bacteriophages isolated from flocks 1 and 2 were closely related to each other in terms of host range, morphology, genome size, and genetic content. All Campylobacter isolates from flock 1 were genotypically indistinguishable by pulsed-field gel electrophoresis (PFGE). PFGE and multilocus sequence typing indicated that this C. jejuni type was maintained from flock 1 to flock 2 but was largely superseded by three genetically distinct C. jejuni types insensitive to the resident bacteriophages. All isolates from the third batch of birds were insensitive to bacteriophages and genotypically distinct. These results are significant because this is the first study of an environmental population of C. jejuni bacteriophages and their influence on the Campylobacter populations of broiler house chickens. The role of developing bacteriophage resistance was investigated as this is a possible obstacle to the use of bacteriophage therapy to reduce the numbers of campylobacters in chickens. In this broiler house succession was largely due to incursion of new genotypes rather than to de novo development of resistance.


2009 ◽  
Vol 75 (13) ◽  
pp. 4264-4272 ◽  
Author(s):  
Ihab Habib ◽  
William G. Miller ◽  
Mieke Uyttendaele ◽  
Kurt Houf ◽  
Lieven De Zutter

ABSTRACT Campylobacter jejuni is one of the most important causes of human diarrhea worldwide. In the present work, multilocus sequence typing was used to study the genotypic diversity of 145 C. jejuni isolates from 135 chicken meat preparations sampled across Belgium. Isolates were further typed by pulsed-field gel electrophoresis, and their susceptibilities to six antimicrobials were determined. Fifty-seven sequence types (STs) were identified; 26.8% of the total typed isolates were ST-50, ST-45, or ST-257, belonging to clonal complex CC-21, CC-45, or CC-257, respectively. One clonal group comprised 22% (32/145) of all isolates, originating from five different companies and isolated over seven sampling months. Additionally, 53.1% of C. jejuni isolates were resistant to ciprofloxacin, and 48.2% were resistant to tetracycline; 28.9% (42/145) of all isolates were resistant to both ciprofloxacin and tetracycline. The correlation between certain C. jejuni clonal groups and resistance to ciprofloxacin and tetracycline was notable. C. jejuni isolates assigned to CC-21 (n = 35) were frequently resistant to ciprofloxacin (65.7%) and tetracycline (40%); however, 90% (18/20) of the isolates assigned to CC-45 were pansusceptible. The present study demonstrates that certain C. jejuni genotypes recur frequently in the chicken meat supply. The results of molecular typing, combined with data on sample sources, indicate a possible dissemination of C. jejuni clones with high resistance to ciprofloxacin and/or tetracycline. Whether certain clonal groups are common in the environment and repeatedly infect Belgian broiler flocks or whether they have the potential to persist on farms or in slaughterhouses needs further investigation.


2002 ◽  
Vol 129 (1) ◽  
pp. 227-231 ◽  
Author(s):  
T. L. WU ◽  
L. H. SU ◽  
J. H. CHIA ◽  
T. M. KAO ◽  
C. H. CHIU ◽  
...  

To investigate the potential of poultry products as the source of human infections associated with quinolone-resistant campylobacters, 140 human and 75 poultry isolates of nalidixic acid-resistant campylobacters were collected between 1996 and 1998, and analysed by two molecular typing methods. By the analysis of restriction fragment length polymorphism of the flagellin gene, 33 distinct patterns were obtained, with 18 of which shared by both human (89%) and poultry (93%) isolates. By the pulsed-field gel electrophoresis of SmaI-restricted macrofragments, 105 different profiles were obtained, and 11 were found in both human (40%) and poultry (23%) isolates. When the two typing methods were combined, 112 unique genotypes were obtained, 11 of which were shared by both populations, including 53 (38%) human isolates and 14 (19%) poultry isolates. Although domestic poultry products are still important sources of the quinolone-resistant campylobacter infections in humans, there are other factors that might contribute to these increasing infections simultaneously. A more stringent policy in the use of antimicrobial agents in food animals can no longer be ignored.


Sign in / Sign up

Export Citation Format

Share Document