Tracing Campylobacter jejuni strains along the poultry meat production chain from farm to retail by pulsed-field gel electrophoresis, and the antimicrobial resistance of isolates

2012 ◽  
Vol 32 (1) ◽  
pp. 124-128 ◽  
Author(s):  
Beatriz Melero ◽  
Pekka Juntunen ◽  
Marja-Liisa Hänninen ◽  
Isabel Jaime ◽  
Jordi Rovira
2010 ◽  
Vol 58 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Igor Gruntar ◽  
Matjaž Ocepek ◽  
Jana Avberšek ◽  
Jasna Mićunović ◽  
Mateja Pate

Campylobacter jejuniandC. colihave recently become the most frequent cause of bacterial foodborne enteric infection in most industrialised countries. Consumption and handling of undercooked contaminated poultry meat was identified as an important risk factor for human campylobacteriosis. The aim of this study was to ascertain the genetic diversity ofC. jejuniandC. colistrains isolated from poultry in Slovenia. A total of 68 isolates (42C. jejuni, 26C. coli) from faeces (n = 48), meat (n = 15) and skin/carcasses (n = 5) of chicken (n = 60) and turkey samples (n = 5) were analysed by pulsed-field gel electrophoresis.SmaI macrorestriction discriminated betweenC. jejuniandC. coliisolates.C. jejuniisolates exhibited a higher degree of diversity compared toC. coliisolates. In theC. jejunigroup, a number of small clusters were apparent, whileC. colistrains formed less but larger clusters. AdditionalKpnI digestion of selected isolates resulted in poor subtyping. Strains with identical or very similar profiles were found on different farms, either in the same or different regions and time periods. Some of the clones indicated possible cross-contamination at slaughterhouses.


2008 ◽  
Vol 74 (24) ◽  
pp. 7715-7722 ◽  
Author(s):  
Catherine Ragimbeau ◽  
François Schneider ◽  
Serge Losch ◽  
Jos Even ◽  
Joël Mossong

ABSTRACT Campylobacter jejuni is the most common cause of bacterial gastroenteritis in Luxembourg, with a marked seasonal peak during summer. The majority of these infections are thought to be sporadic, and the relative contribution of potential sources and reservoirs is still poorly understood. We monitored human cases from June to September 2006 (n = 124) by molecular characterization of isolates with the aim of rapidly detecting temporally related cases. In addition, isolates from poultry meat (n = 36) and cattle cecal contents (n = 48) were genotyped for comparison and identification of common clusters between veterinary and human C. jejuni populations. A total of 208 isolates were typed by sequencing the fla short variable region, macrorestriction analysis resolved by pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). We observed a high diversity of human strains during a given summer season. Poultry and human isolates had a higher diversity of sequence types than isolates of bovine origin, for which clonal complexes CC21 (41.6%) and CC61 (18.7%) were predominant. CC21 was also the most common complex found among human isolates (21.8%). The substantial concordance between PFGE and MLST results for this last group of strains suggests that they are clonally related. Our study indicates that while poultry remains an important source, cattle could be an underestimated reservoir of human C. jejuni cases. Transmission mechanisms of cattle-specific strains warrant further investigation.


2019 ◽  
Vol 12 (8) ◽  
pp. 1311-1318 ◽  
Author(s):  
Dusadee Phongaran ◽  
Seri Khang-Air ◽  
Sunpetch Angkititrakul

Aim: This study aimed to determine the prevalence and antimicrobial resistance pattern of Salmonella spp., and the genetic relatedness between isolates from broilers and pigs at slaughterhouses in Thailand. Materials and Methods: Fecal samples (604 broilers and 562 pigs) were collected from slaughterhouses from April to July 2018. Salmonella spp. were isolated and identified according to the ISO 6579:2002. Salmonella-positive isolates were identified using serotyping and challenged with nine antimicrobial agents: Amoxicillin/clavulanate (AMC, 30 μg), ampicillin (AMP, 10 μg), ceftazidime (30 μg), chloramphenicol (30 μg), ciprofloxacin (CIP, 5 μg), nalidixic acid (NAL, 30 μg), norfloxacin (10 μg), trimethoprim/sulfamethoxazole (SXT, 25 μg), and tetracycline (TET, 30 μg). Isolates of the predominant serovar Salmonella Typhimurium were examined for genetic relatedness using pulsed-field gel electrophoresis (PFGE). Results: Salmonella was detected in 18.05% of broiler isolates and 37.54% of pig isolates. The most common serovars were Kentucky, Give, and Typhimurium in broilers and Rissen, Typhimurium, and Weltevreden in pigs. Among broilers, isolates were most commonly resistant to antibiotics, NAL, AMP, TET, AMC, and CIP. Pig isolates most commonly exhibited antimicrobial resistance against AMP, TET, and SXT. Based on PFGE results among 52 S. Typhimurium isolates from broilers and pigs, a high genetic relatedness between broiler and pig isolates (85% similarity) in Cluster A and C from PFGE result was identified. Conclusion: The results revealed high cross-contamination between these two animal species across various provinces in Thailand. Keywords: antimicrobial resistance, broilers, pigs, pulsed-field gel electrophoresis, Salmonella spp.


2020 ◽  
Vol 7 ◽  
Author(s):  
David Ortega-Paredes ◽  
Sofía de Janon ◽  
Fernando Villavicencio ◽  
Katherine Jaramillo Ruales ◽  
Kenny De La Torre ◽  
...  

Antimicrobial resistance (AMR) is a major health threat for public and animal health in the twenty-first century. In Ecuador, antibiotics have been used by the poultry industry for decades resulting in the presence of multi-drug resistant (MDR) bacteria in the poultry meat production chain, with the consequent risk for public health. This study evaluated the prevalence of ESBL/AmpC and mcr genes in third-generation cephalosporin-resistant Escherichia coli (3GC-R E. coli) isolated from broiler farms (animal component), broiler carcasses (food component), and human enteritis (human component) in Quito-Ecuador. Samples were collected weekly from November 2017 to November 2018. For the animal, food, and human components, 133, 335, and 302 samples were analyzed, respectively. Profiles of antimicrobial resistance were analyzed by an automated microdilution system. Resistance genes were studied by PCR and Sanger sequencing. From all samples, 122 (91.7%), 258 (77%), and 146 (48.3%) samples were positive for 3GC-R E. coli in the animal, food, and human components, respectively. Most of the isolates (472/526, 89.7%) presented MDR phenotypes. The ESBL blaCTX-M-55, blaCTX-M-3, blaCTX-M-15, blaCTX-M-65, blaCTX-M-27, and blaCTX-M-14 were the most prevalent ESBL genes while blaCMY-2 was the only AmpC detected gene. The mcr-1 gene was found in 20 (16.4%), 26 (10.1%), and 3 (2.1%) of isolates from animal, food, and human components, respectively. The implication of poultry products in the prevalence of ESBL/AmpC and mcr genes in 3GC-R must be considered in the surveillance of antimicrobial resistance.


2013 ◽  
Vol 76 (1) ◽  
pp. 18-25 ◽  
Author(s):  
J. S. VAN KESSEL ◽  
J. SONNIER ◽  
S. ZHAO ◽  
J. S. KARNS

Salmonella isolates were recovered from bulk tank milk as part of the National Animal Health Monitoring System (NAHMS) Dairy 2002 and 2007 surveys. In-line milk filters were also tested in the 2007 survey. The objective of this study was to determine the prevalence of antimicrobial resistance among Salmonella enterica isolates from bulk milk and milk filters in the NAHMS Dairy 2002 and 2007 surveys and to further characterize resistant isolates. Susceptibilities to 15 antibiotics were determined for 176 Salmonella isolates of 26 serotypes using an automated antimicrobial susceptibility system. Resistant isolates were screened by PCR for the presence of the extended-spectrum β-lactamase (blaCMY) gene and class I integrons and further characterized by pulsed-field gel electrophoresis. Thirty isolates (17.0%) representing six S. enterica serotypes exhibited resistance to at least one antimicrobial agent (serotypes Newport [14 of 14 isolates exhibited resistance], Dublin [7 of 7], Typhimurium [3 of 5], Kentucky [4 of 22], Anatum [1 of 13], and Infantis [1 of 2]). Twenty isolates (11.4%), including all 14 Newport, 3 Dublin, 2 Typhimurium, and 1 Infantis isolate, displayed the typical multidrug-resistant, blaCMY-positive (MDR-AmpC) phenotype which included resistance to ampicillin, chloramphenicol, streptomycin, sulfonamide, and tetracycline, plus resistance to amoxicillin–clavulanic acid and extended-spectrum cephalosporins. Five of the MDR-AmpC isolates carried class I integrons (2.8%). Two-enzyme (XbaI and BlnI) pulsed-field gel electrophoresis discerned clades within serotypes and, together with the resistance profiles, identified strains that appeared to have persisted temporally and geographically. These results suggest that there is a low but appreciable risk of infection with MDR Salmonella from consumption of nonpasteurized milk and dairy products.


2004 ◽  
Vol 48 (2) ◽  
pp. 666-669 ◽  
Author(s):  
Raquel Barbolla ◽  
Mariana Catalano ◽  
Betina E. Orman ◽  
Angela Famiglietti ◽  
Carlos Vay ◽  
...  

ABSTRACT Twenty-five plasmid-specified antimicrobial resistance determinants common to gram-negative bacilli from nosocomial infection were investigated from 31 Stenotrophomonas maltophilia isolates. Twenty-four clones were identified by pulsed-field gel electrophoresis, and in three clones that exhibited an increased trimethoprim-sulfamethoxazole MIC, the sul1 determinant was found. These results support not only the higher spread of class 1 integrons compared to other mechanisms but also the potential limitation of using trimethoprim-sulfamethoxazole for therapy of severe S. maltophilia infections.


Sign in / Sign up

Export Citation Format

Share Document