scholarly journals Temporal Assessment of the Impact of Exposure to Cow Feces in Two Watersheds by Multiple Host-Specific PCR Assays

2008 ◽  
Vol 74 (22) ◽  
pp. 6839-6847 ◽  
Author(s):  
Yong-Jin Lee ◽  
Marirosa Molina ◽  
Jorge W. Santo Domingo ◽  
Jonathan D. Willis ◽  
Michael Cyterski ◽  
...  

ABSTRACT Exposure to feces in two watersheds with different management histories was assessed by tracking cattle feces bacterial populations using multiple host-specific PCR assays. In addition, environmental factors affecting the occurrence of these markers were identified. Each assay was performed using DNA extracts from water and sediment samples collected from a watershed directly impacted by cattle fecal pollution (WS1) and from a watershed impacted only through runoff (WS2). In WS1, the ruminant-specific Bacteroidales 16S rRNA gene marker CF128F was detected in 65% of the water samples, while the non-16S rRNA gene markers Bac1, Bac2, and Bac5 were found in 32 to 37% of the water samples. In contrast, all source-specific markers were detected in less than 6% of the water samples from WS2. Binary logistic regressions (BLRs) revealed that the occurrence of Bac32F and CF128F was significantly correlated with season as a temporal factor and watershed as a site factor. BLRs also indicated that the dynamics of fecal-source-tracking markers correlated with the density of a traditional fecal indicator (P < 0.001). Overall, our results suggest that a combination of 16S rRNA gene and non-16S rRNA gene markers provides a higher level of confidence for tracking unknown sources of fecal pollution in environmental samples. This study also provided practical insights for implementation of microbial source-tracking practices to determine sources of fecal pollution and the influence of environmental variables on the occurrence of source-specific markers.

2010 ◽  
Vol 44 (20) ◽  
pp. 6164-6174 ◽  
Author(s):  
Rulong Liu ◽  
Miranda H.Y. Chiang ◽  
Clare H.I. Lun ◽  
Pei-Yuan Qian ◽  
Stanley C.K. Lau

2001 ◽  
Vol 67 (9) ◽  
pp. 3985-3993 ◽  
Author(s):  
Nele Wellinghausen ◽  
Cathrin Frost ◽  
Reinhard Marre

ABSTRACT Contamination of hospital water systems with legionellae is a well-known cause of nosocomial legionellosis. We describe a new real-time LightCycler PCR assay for quantitative determination of legionellae in potable water samples. Primers that amplify both a 386-bp fragment of the 16S rRNA gene from Legionellaspp. and a specifically cloned fragment of the phage lambda, added to each sample as an internal inhibitor control, were used. The amplified products were detected by use of a dual-color hybridization probe assay design and quantified with external standards composed ofLegionella pneumophila genomic DNA. The PCR assay had a sensitivity of 1 fg of Legionella DNA (i.e., less than one Legionella organism) per assay and detected 44Legionella species and serogroups. Seventy-seven water samples from three hospitals were investigated by PCR and culture. The rates of detection of legionellae were 98.7% (76 of 77) by the PCR assay and 70.1% (54 of 77) by culture; PCR inhibitors were detected in one sample. The amounts of legionellae calculated from the PCR results were associated with the CFU detected by culture (r= 0.57; P < 0.001), but PCR results were mostly higher than the culture results. Since L. pneumophila is the main cause of legionellosis, we further developed a quantitativeL. pneumophila-specific PCR assay targeting the macrophage infectivity potentiator (mip) gene, which codes for an immunophilin of the FK506 binding protein family. All but one of the 16S rRNA gene PCR-positive water samples were also positive in the mip gene PCR, and the results of the two PCR assays were correlated. In conclusion, the newly developedLegionella genus-specific and L. pneumophila species-specific PCR assays proved to be valuable tools for investigation of Legionella contamination in potable water systems.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Shuchen Feng ◽  
Sandra L. McLellan

ABSTRACTThe identification of sewage contamination in water has primarily relied on the detection of human-associatedBacteroidesusing markers within the V2 region of the 16S rRNA gene. Despite the establishment of multiple assays that target the HF183 cluster (i.e.,Bacteroides dorei) and otherBacteroidesorganisms (e.g.,Bacteroides thetaiotaomicron), the potential for more human-associated markers in this genus has not been explored in depth. We examined theBacteroidespopulation structure in sewage and animal hosts across the V4V5 and V6 hypervariable regions. Using near-full-length cloned sequences, we identified the sequences in the V4V5 and V6 hypervariable regions that are linked to the HF183 marker in the V2 region and found these sequences were present in multiple animals. In addition, the V4V5 and V6 regions contained human fecal marker sequences for organisms that were independent of the HF183 cluster. The most abundantBacteroidesin untreated sewage was not human associated but pipe derived. Two TaqMan quantitative PCR (qPCR) assays targeting the V4V5 and V6 regions of this organism were developed. Validation studies using fecal samples from seven animal hosts (n = 76) and uncontaminated water samples (n = 30) demonstrated the high specificity of the assays for sewage. FreshwaterBacteroideswere also identified in uncontaminated water samples, demonstrating that measures of totalBacteroidesdo not reflect fecal pollution. A comparison of two previously described humanBacteroidesassays (HB and HF183/BacR287) in municipal wastewater influent and sewage-contaminated urban water samples revealed identical results, illustrating the assays target the same organism. The detection of sewage-derivedBacteroidesprovided an independent measure of sewage-impacted waters.IMPORTANCEBacteroidesare major members of the gut microbiota, and host-specific organisms within this genus have been used extensively to gain information on pollution sources. This study provides a broad view of the population structure ofBacteroideswithin sewage to contextualize the well-studied HF183 marker for a human-associatedBacteroides. The study also delineates host-specific sequence patterns across multiple hypervariable regions of the 16S rRNA gene to improve our ability to use sequence data to assess water quality. Here, we demonstrate that regions downstream of the HF183 marker are nonspecific but other potential human-associated markers are present. Furthermore, we show the most abundantBacteroidesin sewage is free living, rather than host associated, and specifically found in sewage. Quantitative PCR assays that target organisms specific to sewer pipes offer measures that are independent of the human microbiome for identifying sewage pollution in water.


2015 ◽  
Vol 81 (20) ◽  
pp. 7067-7077 ◽  
Author(s):  
W. Ahmed ◽  
C. Staley ◽  
M. J. Sadowsky ◽  
P. Gyawali ◽  
J. P. S. Sidhu ◽  
...  

ABSTRACTIn this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways.


2010 ◽  
Vol 20 (2) ◽  
pp. 245-253 ◽  
Author(s):  
Ju-Yong Jeong ◽  
Hee-Deung Park ◽  
Kyong-Hee Lee ◽  
Jae-Hong Hwang ◽  
Jong-Ok Ka

2009 ◽  
Vol 75 (18) ◽  
pp. 5787-5796 ◽  
Author(s):  
Regina Lamendella ◽  
Jorge W. Santo Domingo ◽  
Anthony C. Yannarell ◽  
Shreya Ghosh ◽  
George Di Giovanni ◽  
...  

ABSTRACT In this study, we evaluated the specificity, distribution, and sensitivity of Prevotella strain-based (PF163 and PigBac1) and methanogen-based (P23-2) PCR assays proposed to detect swine fecal pollution in environmental waters. The assays were tested against 222 fecal DNA extracts derived from target and nontarget animal hosts and against 34 groundwater and 15 surface water samples from five different sites. We also investigated the phylogenetic diversity of 1,340 “Bacteroidales” 16S rRNA gene sequences derived from swine feces, swine waste lagoons, swine manure pits, and waters adjacent to swine operations. Most swine fecal samples were positive for the host-specific Prevotella-based PCR assays (80 to 87%), while fewer were positive with the methanogen-targeted PCR assay (53%). Similarly, the Prevotella markers were detected more frequently than the methanogen-targeted assay markers in waters historically impacted with swine fecal contamination. However, the PF163 PCR assay cross-reacted with 23% of nontarget fecal DNA extracts, although Bayesian statistics suggested that it yielded the highest probability of detecting pig fecal contamination in a given water sample. Phylogenetic analyses revealed previously unknown swine-associated clades comprised of clones from geographically diverse swine sources and from water samples adjacent to swine operations that are not targeted by the Prevotella assays. While deeper sequencing coverage might be necessary to better understand the molecular diversity of fecal Bacteroidales species, results of sequence analyses supported the presence of swine fecal pollution in the studied watersheds. Overall, due to nontarget cross amplification and poor geographic stability of currently available host-specific PCR assays, development of additional assays is necessary to accurately detect sources of swine fecal pollution.


2009 ◽  
Vol 43 (19) ◽  
pp. 4838-4849 ◽  
Author(s):  
B. Fremaux ◽  
J. Gritzfeld ◽  
T. Boa ◽  
C.K. Yost

mSphere ◽  
2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Saara Sillanpää ◽  
Lenka Kramna ◽  
Sami Oikarinen ◽  
Markku Sipilä ◽  
Markus Rautiainen ◽  
...  

ABSTRACT Although S. pneumoniae, H. influenzae, and M. catarrhalis have been long established as the most important pathogens in acute otitis media using culture and specific PCR assays, the knowledge of their mutual quantitative relations and possible roles of other bacteria is incomplete. The advent of unbiased bacteriome 16S rRNA gene profiling has allowed the detection of nearly all bacteria present in the sample, and it helps in depicting their mutual quantitative ratios. Due to the difficulties in performing mass sequencing in low-volume samples, only a few bacteriome-profiling studies of otitis media have been published, all limited to cases of chronic otitis media. Here, we present a study on samples obtained from young children with acute otitis media, successfully using a strategy of nested PCR coupled with mass sequencing, and demonstrate that the method can confer quantitative information hardly obtainable by other methods. The aim of the study was to analyze the bacteriome of acute otitis media with a novel modification of next-generation sequencing techniques. Outpatient children with acute otitis media were enrolled in the study, and middle ear fluids were collected during 90 episodes from 79 subjects aged 5 to 42 months (median age, 19 months). The bacteriome profiles of middle ear fluid samples were determined by a nested-PCR amplification of the 16S rRNA gene (V4 region), followed by mass sequencing. The profiling results were compared to the results of specific PCR assays targeting selected prevalent pathogens. Bacteriome profiling using nested amplification of low-volume samples was aided by a bioinformatic subtraction of signal contaminants from the recombinant polymerase, achieving a sensitivity slightly lower than that of specific PCR detection. Streptococcus pneumoniae was detected in 28 (31%) samples, Haemophilus influenzae in 24 (27%), Moraxella catarrhalis in 18 (20%), Staphylococcus spp. in 21 (23%), Turicella otitidis in 5 (5.6%), Alloiococcus otitidis in 3 (3.3%), and other bacteria in 14 (16%) using bacteriome profiling. S. pneumoniae was the dominant pathogen in 14 (16%) samples, H. influenzae in 15 (17%), M. catarrhalis in 5 (5.6%), T. otitidis in 2, and Staphylococcus auricularis in 2. Weaker signals of Prevotella melaninogenica, Veillonella dispar, and Veillonella montpellierensis were noted in several samples. Fourteen samples (16%) were not explainable by bacterial pathogens; novel causative agents were not detected. In conclusion, unbiased bacteriome profiling helped in depicting the true mutual quantitative ratios of ear bacteria, but at present, its complicated protocol impedes its routine clinical use. IMPORTANCE Although S. pneumoniae, H. influenzae, and M. catarrhalis have been long established as the most important pathogens in acute otitis media using culture and specific PCR assays, the knowledge of their mutual quantitative relations and possible roles of other bacteria is incomplete. The advent of unbiased bacteriome 16S rRNA gene profiling has allowed the detection of nearly all bacteria present in the sample, and it helps in depicting their mutual quantitative ratios. Due to the difficulties in performing mass sequencing in low-volume samples, only a few bacteriome-profiling studies of otitis media have been published, all limited to cases of chronic otitis media. Here, we present a study on samples obtained from young children with acute otitis media, successfully using a strategy of nested PCR coupled with mass sequencing, and demonstrate that the method can confer quantitative information hardly obtainable by other methods.


2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Nabil Abdullah El Aila ◽  
Stefan Emler ◽  
Tarja Kaijalainen ◽  
Thierry De Baere ◽  
Bart Saerens ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Christine Drengenes ◽  
Tomas M. L. Eagan ◽  
Ingvild Haaland ◽  
Harald G. Wiker ◽  
Rune Nielsen

Abstract Background Studies on the airway microbiome have been performed using a wide range of laboratory protocols for high-throughput sequencing of the bacterial 16S ribosomal RNA (16S rRNA) gene. We sought to determine the impact of number of polymerase chain reaction (PCR) steps (1- or 2- steps) and choice of target marker gene region (V3 V4 and V4) on the presentation of the upper and lower airway microbiome. Our analyses included lllumina MiSeq sequencing following three setups: Setup 1 (2-step PCR; V3 V4 region), Setup 2 (2-step PCR; V4 region), Setup 3 (1-step PCR; V4 region). Samples included oral wash, protected specimen brushes and protected bronchoalveolar lavage (healthy and obstructive lung disease), and negative controls. Results The number of sequences and amplicon sequence variants (ASV) decreased in order setup1 > setup2 > setup3. This trend appeared to be associated with an increased taxonomic resolution when sequencing the V3 V4 region (setup 1) and an increased number of small ASVs in setups 1 and 2. The latter was considered a result of contamination in the two-step PCR protocols as well as sequencing across multiple runs (setup 1). Although genera Streptococcus, Prevotella, Veillonella and Rothia dominated, differences in relative abundance were observed across all setups. Analyses of beta-diversity revealed that while oral wash samples (high biomass) clustered together regardless of number of PCR steps, samples from the lungs (low biomass) separated. The removal of contaminants identified using the Decontam package in R, did not resolve differences in results between sequencing setups. Conclusions Differences in number of PCR steps will have an impact of final bacterial community descriptions, and more so for samples of low bacterial load. Our findings could not be explained by differences in contamination levels alone, and more research is needed to understand how variations in PCR-setups and reagents may be contributing to the observed protocol bias.


Sign in / Sign up

Export Citation Format

Share Document