scholarly journals The development of a 16S rRNA gene based PCR for the identification of Streptococcus pneumoniaeand comparison with four other species specific PCR assays

2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Nabil Abdullah El Aila ◽  
Stefan Emler ◽  
Tarja Kaijalainen ◽  
Thierry De Baere ◽  
Bart Saerens ◽  
...  
1999 ◽  
Vol 65 (10) ◽  
pp. 4506-4512 ◽  
Author(s):  
Takahiro Matsuki ◽  
Koichi Watanabe ◽  
Ryuichiro Tanaka ◽  
Masafumi Fukuda ◽  
Hiroshi Oyaizu

ABSTRACT In order to clarify the distribution of bifidobacterial species in the human intestinal tract, a 16S rRNA-gene-targeted species-specific PCR technique was developed and used with DNAs extracted from fecal samples obtained from 48 healthy adults and 27 breast-fed infants. To cover all of the bifidobacterial species that have been isolated from and identified in the human intestinal tract, species-specific primers for Bifidobacterium longum, B. infantis,B. dentium, and B. gallicum were developed and used with primers for B. adolescentis, B. angulatum, B. bifidum, B. breve, and the B. catenulatum group (B. catenulatum andB. pseudocatenulatum) that were developed in a previous study (T. Matsuki, K. Watanabe, R. Tanaka, and H. Oyaizu, FEMS Microbiol. Lett. 167:113–121, 1998). The specificity of the nine primers was confirmed by PCR, and the species-specific PCR method was found to be a useful means for identifying Bifidobacteriumstrains isolated from human feces. The results of an examination of bifidobacterial species distribution showed that the B. catenulatum group was the most commonly found taxon (detected in 44 of 48 samples [92%]), followed by B. longum andB. adolescentis, in the adult intestinal bifidobacterial flora and that B. breve, B. infantis, andB. longum were frequently found in the intestinal tracts of infants. The present study demonstrated that qualitative detection of the bifidobacterial species present in human feces can be accomplished rapidly and accurately.


2009 ◽  
Vol 58 (7) ◽  
pp. 900-904 ◽  
Author(s):  
Andie S. Lee ◽  
Peter Jelfs ◽  
Vitali Sintchenko ◽  
Gwendolyn L. Gilbert

Non-tuberculous mycobacteria (NTM) causing clinical disease have become increasingly common and more diverse. A new reverse line probe assay, GenoType Mycobacterium CM/AS (Hain Lifescience), was evaluated for identification of a broad range of NTM. It was compared with phenotypic (HPLC) and molecular (DNA probes, in-house real-time multiplex species-specific PCR, 16S rRNA gene PCR and sequencing) identification techniques, which together provided the reference ‘gold standard’. A total of 131 clinical isolates belonging to 31 Mycobacterium species and 19 controls, including 5 non-Mycobacterium species, was used. Concordant results between the GenoType Mycobacterium assay and the reference identification were obtained in 119/131 clinical isolates (90.8 %). Identification of Mycobacterium abscessus and Mycobacterium lentiflavum by the assay was problematic. The GenoType Mycobacterium assay enables rapid identification of a broad range of potentially clinically significant Mycobacterium species, but some species require further testing to differentiate or confirm ambiguous results.


mSphere ◽  
2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Saara Sillanpää ◽  
Lenka Kramna ◽  
Sami Oikarinen ◽  
Markku Sipilä ◽  
Markus Rautiainen ◽  
...  

ABSTRACT Although S. pneumoniae, H. influenzae, and M. catarrhalis have been long established as the most important pathogens in acute otitis media using culture and specific PCR assays, the knowledge of their mutual quantitative relations and possible roles of other bacteria is incomplete. The advent of unbiased bacteriome 16S rRNA gene profiling has allowed the detection of nearly all bacteria present in the sample, and it helps in depicting their mutual quantitative ratios. Due to the difficulties in performing mass sequencing in low-volume samples, only a few bacteriome-profiling studies of otitis media have been published, all limited to cases of chronic otitis media. Here, we present a study on samples obtained from young children with acute otitis media, successfully using a strategy of nested PCR coupled with mass sequencing, and demonstrate that the method can confer quantitative information hardly obtainable by other methods. The aim of the study was to analyze the bacteriome of acute otitis media with a novel modification of next-generation sequencing techniques. Outpatient children with acute otitis media were enrolled in the study, and middle ear fluids were collected during 90 episodes from 79 subjects aged 5 to 42 months (median age, 19 months). The bacteriome profiles of middle ear fluid samples were determined by a nested-PCR amplification of the 16S rRNA gene (V4 region), followed by mass sequencing. The profiling results were compared to the results of specific PCR assays targeting selected prevalent pathogens. Bacteriome profiling using nested amplification of low-volume samples was aided by a bioinformatic subtraction of signal contaminants from the recombinant polymerase, achieving a sensitivity slightly lower than that of specific PCR detection. Streptococcus pneumoniae was detected in 28 (31%) samples, Haemophilus influenzae in 24 (27%), Moraxella catarrhalis in 18 (20%), Staphylococcus spp. in 21 (23%), Turicella otitidis in 5 (5.6%), Alloiococcus otitidis in 3 (3.3%), and other bacteria in 14 (16%) using bacteriome profiling. S. pneumoniae was the dominant pathogen in 14 (16%) samples, H. influenzae in 15 (17%), M. catarrhalis in 5 (5.6%), T. otitidis in 2, and Staphylococcus auricularis in 2. Weaker signals of Prevotella melaninogenica, Veillonella dispar, and Veillonella montpellierensis were noted in several samples. Fourteen samples (16%) were not explainable by bacterial pathogens; novel causative agents were not detected. In conclusion, unbiased bacteriome profiling helped in depicting the true mutual quantitative ratios of ear bacteria, but at present, its complicated protocol impedes its routine clinical use. IMPORTANCE Although S. pneumoniae, H. influenzae, and M. catarrhalis have been long established as the most important pathogens in acute otitis media using culture and specific PCR assays, the knowledge of their mutual quantitative relations and possible roles of other bacteria is incomplete. The advent of unbiased bacteriome 16S rRNA gene profiling has allowed the detection of nearly all bacteria present in the sample, and it helps in depicting their mutual quantitative ratios. Due to the difficulties in performing mass sequencing in low-volume samples, only a few bacteriome-profiling studies of otitis media have been published, all limited to cases of chronic otitis media. Here, we present a study on samples obtained from young children with acute otitis media, successfully using a strategy of nested PCR coupled with mass sequencing, and demonstrate that the method can confer quantitative information hardly obtainable by other methods.


2001 ◽  
Vol 67 (9) ◽  
pp. 3985-3993 ◽  
Author(s):  
Nele Wellinghausen ◽  
Cathrin Frost ◽  
Reinhard Marre

ABSTRACT Contamination of hospital water systems with legionellae is a well-known cause of nosocomial legionellosis. We describe a new real-time LightCycler PCR assay for quantitative determination of legionellae in potable water samples. Primers that amplify both a 386-bp fragment of the 16S rRNA gene from Legionellaspp. and a specifically cloned fragment of the phage lambda, added to each sample as an internal inhibitor control, were used. The amplified products were detected by use of a dual-color hybridization probe assay design and quantified with external standards composed ofLegionella pneumophila genomic DNA. The PCR assay had a sensitivity of 1 fg of Legionella DNA (i.e., less than one Legionella organism) per assay and detected 44Legionella species and serogroups. Seventy-seven water samples from three hospitals were investigated by PCR and culture. The rates of detection of legionellae were 98.7% (76 of 77) by the PCR assay and 70.1% (54 of 77) by culture; PCR inhibitors were detected in one sample. The amounts of legionellae calculated from the PCR results were associated with the CFU detected by culture (r= 0.57; P < 0.001), but PCR results were mostly higher than the culture results. Since L. pneumophila is the main cause of legionellosis, we further developed a quantitativeL. pneumophila-specific PCR assay targeting the macrophage infectivity potentiator (mip) gene, which codes for an immunophilin of the FK506 binding protein family. All but one of the 16S rRNA gene PCR-positive water samples were also positive in the mip gene PCR, and the results of the two PCR assays were correlated. In conclusion, the newly developedLegionella genus-specific and L. pneumophila species-specific PCR assays proved to be valuable tools for investigation of Legionella contamination in potable water systems.


2001 ◽  
Vol 8 (2) ◽  
pp. 241-244 ◽  
Author(s):  
Hisashi Inokuma ◽  
Yutaka Terada ◽  
Tugihiko Kamio ◽  
Didier Raoult ◽  
Philippe Brouqui

ABSTRACT The nucleotide sequence of the Anaplasma centrale 16S rRNA gene was determined and compared with the sequences of ehrlichial bacteria. The sequence of A. centrale was closely related to Anaplasma marginale by both level-of-similarity (98.08% identical) and distance analysis. A species-specific PCR was developed based upon the alignment data. The PCR can detect A. centrale DNA extracted from 10 infected bovine red blood cells in a reaction mixture. A. centrale DNA was amplified in the reaction, but not other related ehrlichial species.


2008 ◽  
Vol 74 (22) ◽  
pp. 6839-6847 ◽  
Author(s):  
Yong-Jin Lee ◽  
Marirosa Molina ◽  
Jorge W. Santo Domingo ◽  
Jonathan D. Willis ◽  
Michael Cyterski ◽  
...  

ABSTRACT Exposure to feces in two watersheds with different management histories was assessed by tracking cattle feces bacterial populations using multiple host-specific PCR assays. In addition, environmental factors affecting the occurrence of these markers were identified. Each assay was performed using DNA extracts from water and sediment samples collected from a watershed directly impacted by cattle fecal pollution (WS1) and from a watershed impacted only through runoff (WS2). In WS1, the ruminant-specific Bacteroidales 16S rRNA gene marker CF128F was detected in 65% of the water samples, while the non-16S rRNA gene markers Bac1, Bac2, and Bac5 were found in 32 to 37% of the water samples. In contrast, all source-specific markers were detected in less than 6% of the water samples from WS2. Binary logistic regressions (BLRs) revealed that the occurrence of Bac32F and CF128F was significantly correlated with season as a temporal factor and watershed as a site factor. BLRs also indicated that the dynamics of fecal-source-tracking markers correlated with the density of a traditional fecal indicator (P < 0.001). Overall, our results suggest that a combination of 16S rRNA gene and non-16S rRNA gene markers provides a higher level of confidence for tracking unknown sources of fecal pollution in environmental samples. This study also provided practical insights for implementation of microbial source-tracking practices to determine sources of fecal pollution and the influence of environmental variables on the occurrence of source-specific markers.


2007 ◽  
Vol 57 (3) ◽  
pp. 444-449 ◽  
Author(s):  
Minna Hannula ◽  
Marja-Liisa Hänninen

Analysis of 16S rRNA gene sequences is one of the most common methods for investigating the phylogeny and taxonomy of bacteria. However, several studies have indicated that the 16S rRNA gene does not distinguish between certain Helicobacter species. We therefore selected for phylogenetic analysis an alternative marker, gyrB, encoding gyrase subunit B. The aim of this investigation was to examine the applicability of gyrB gene fragments (~1100 bp) for the phylogenetic study of 16 Helicobacter species and a total of 33 Helicobacter strains included in this study. Based on the sequenced fragments, a phylogenetic tree was obtained that contained two distinct clusters, with gastric species forming one cluster and enterohepatic species the other. The only exception was the gastric species Helicobacter mustelae, which clustered with the enterohepatic species. The calculated similarity matrix revealed the highest interspecies similarity between Helicobacter salomonis and Helicobacter felis (89 %) and the lowest similarity between Helicobacter pullorum and H. felis (60 %). The DNA G+C content of the sequenced fragments was ⩽40 mol% in enterohepatic species and >46 mol% in gastric species, excluding Helicobacter pylori and H. mustelae, with G+C contents of 34 and 42 mol%, respectively. In summary, the gyrB gene fragments provided superior resolution and reliability to the 16S rRNA gene for differentiating between closely related Helicobacter species. A further outcome of this study was achieved by designing gyrB gene-based species-specific PCR primers for the identification of Helicobacter bizzozeronii.


2006 ◽  
Vol 72 (6) ◽  
pp. 4464-4471 ◽  
Author(s):  
G. Douglas Inglis ◽  
Malcolm McConville ◽  
Anno de Jong

ABSTRACT Forty-two Helicobacter isolates were isolated from swine feces in The Netherlands and Denmark. All 12 isolates sequenced (16S rRNA gene) formed a robust clade with Helicobacter canadensis (∼99% similarity). Species-specific PCR indicated that all of the isolates were H. canadensis isolates. Although the appearance of the porcine isolates was similar to the appearance of H. canadensis, only one of these isolates was able to hydrolyze indoxyl acetate, a cardinal characteristic of this taxon. Examination of the 23S rRNA and hsp60 genes revealed high levels of similarity between the porcine isolates and H. canadensis. However, amplified fragment length polymorphism genomic typing showed that isolates recovered from swine feces were genetically distinct from H. canadensis strains obtained from humans and geese.


2008 ◽  
Vol 74 (13) ◽  
pp. 3969-3976 ◽  
Author(s):  
Jingrang Lu ◽  
Jorge W. Santo Domingo ◽  
Regina Lamendella ◽  
Thomas Edge ◽  
Stephen Hill

ABSTRACT In spite of increasing public health concerns about the potential risks associated with swimming in waters contaminated with waterfowl feces, little is known about the composition of the gut microbial community of aquatic birds. To address this, a gull 16S rRNA gene clone library was developed and analyzed to determine the identities of fecal bacteria. Analysis of 282 16S rRNA gene clones demonstrated that the gull gut bacterial community is mostly composed of populations closely related to Bacilli (37%), Clostridia (17%), Gammaproteobacteria (11%), and Bacteriodetes (1%). Interestingly, a considerable number of sequences (i.e., 26%) were closely related to Catellicoccus marimammalium, a gram-positive, catalase-negative bacterium. To determine the occurrence of C. marimammalium in waterfowl, species-specific 16S rRNA gene PCR and real-time assays were developed and used to test fecal DNA extracts from different bird (n = 13) and mammal (n = 26) species. The results showed that both assays were specific to gull fecal DNA and that C. marimammalium was present in gull fecal samples collected from the five locations in North America (California, Georgia, Ohio, Wisconsin, and Toronto, Canada) tested. Additionally, 48 DNA extracts from waters collected from six sites in southern California, Great Lakes in Michigan, Lake Erie in Ohio, and Lake Ontario in Canada presumed to be impacted with gull feces were positive by the C. marimammalium assay. Due to the widespread presence of this species in gulls and environmental waters contaminated with gull feces, targeting this bacterial species might be useful for detecting gull fecal contamination in waterfowl-impacted waters.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Shuchen Feng ◽  
Sandra L. McLellan

ABSTRACTThe identification of sewage contamination in water has primarily relied on the detection of human-associatedBacteroidesusing markers within the V2 region of the 16S rRNA gene. Despite the establishment of multiple assays that target the HF183 cluster (i.e.,Bacteroides dorei) and otherBacteroidesorganisms (e.g.,Bacteroides thetaiotaomicron), the potential for more human-associated markers in this genus has not been explored in depth. We examined theBacteroidespopulation structure in sewage and animal hosts across the V4V5 and V6 hypervariable regions. Using near-full-length cloned sequences, we identified the sequences in the V4V5 and V6 hypervariable regions that are linked to the HF183 marker in the V2 region and found these sequences were present in multiple animals. In addition, the V4V5 and V6 regions contained human fecal marker sequences for organisms that were independent of the HF183 cluster. The most abundantBacteroidesin untreated sewage was not human associated but pipe derived. Two TaqMan quantitative PCR (qPCR) assays targeting the V4V5 and V6 regions of this organism were developed. Validation studies using fecal samples from seven animal hosts (n = 76) and uncontaminated water samples (n = 30) demonstrated the high specificity of the assays for sewage. FreshwaterBacteroideswere also identified in uncontaminated water samples, demonstrating that measures of totalBacteroidesdo not reflect fecal pollution. A comparison of two previously described humanBacteroidesassays (HB and HF183/BacR287) in municipal wastewater influent and sewage-contaminated urban water samples revealed identical results, illustrating the assays target the same organism. The detection of sewage-derivedBacteroidesprovided an independent measure of sewage-impacted waters.IMPORTANCEBacteroidesare major members of the gut microbiota, and host-specific organisms within this genus have been used extensively to gain information on pollution sources. This study provides a broad view of the population structure ofBacteroideswithin sewage to contextualize the well-studied HF183 marker for a human-associatedBacteroides. The study also delineates host-specific sequence patterns across multiple hypervariable regions of the 16S rRNA gene to improve our ability to use sequence data to assess water quality. Here, we demonstrate that regions downstream of the HF183 marker are nonspecific but other potential human-associated markers are present. Furthermore, we show the most abundantBacteroidesin sewage is free living, rather than host associated, and specifically found in sewage. Quantitative PCR assays that target organisms specific to sewer pipes offer measures that are independent of the human microbiome for identifying sewage pollution in water.


Sign in / Sign up

Export Citation Format

Share Document