scholarly journals Release of Arsenic from Soil by a Novel Dissimilatory Arsenate-Reducing Bacterium, Anaeromyxobacter sp. Strain PSR-1

2013 ◽  
Vol 79 (15) ◽  
pp. 4635-4642 ◽  
Author(s):  
Keitaro Kudo ◽  
Noriko Yamaguchi ◽  
Tomoyuki Makino ◽  
Toshihiko Ohtsuka ◽  
Kenta Kimura ◽  
...  

ABSTRACTA novel arsenate-reducing bacterium, designated strain PSR-1, was isolated from arsenic-contaminated soil. Strain PSR-1 was phylogenetically closely related toAnaeromyxobacter dehalogenans2CP-1Twith 16S rRNA gene similarity of 99.7% and coupled the oxidation of acetate with the reduction of arsenate. Arsenate reduction was inhibited almost completely by respiratory inhibitors such as dicumarol and 2-heptyl-4-hydroxyquinolineN-oxide. Strain PSR-1 also utilized soluble Fe(III), ferrihydrite, nitrate, oxygen, and fumarate as electron acceptors. Strain PSR-1 catalyzed the release of arsenic from arsenate-adsorbed ferrihydrite. In addition, inoculation of washed cells of strain PSR-1 into sterilized soil successfully reproduced arsenic release. Arsenic K-edge X-ray absorption near-edge structure (XANES) analysis revealed that the proportion of arsenite in the soil solid phase actually increased from 20% to 50% during incubation with washed cells of strain PSR-1. These results suggest that strain PSR-1 is capable of reducing not only dissolved arsenate but also arsenate adsorbed on the soil mineral phase. Arsenate reduction by strain PSR-1 expands the metabolic versatility ofAnaeromyxobacter dehalogenans. Considering its distribution throughout diverse soils and anoxic sediments,Anaeromyxobacter dehalogenansmay play a role in arsenic release from these environments.

2013 ◽  
Vol 79 (20) ◽  
pp. 6385-6390 ◽  
Author(s):  
Gudrun Lisa Bovenkamp ◽  
Ulrike Zanzen ◽  
Katla Sai Krishna ◽  
Josef Hormes ◽  
Alexander Prange

ABSTRACTSilver ions are widely used as antibacterial agents, but the basic molecular mechanism of this effect is still poorly understood. X-ray absorption near-edge structure (XANES) spectroscopy at the AgLIII, SK, and PKedges reveals the chemical forms of silver inStaphylococcus aureusandEscherichia coli(Ag+treated). The AgLIII-edge XANES spectra of the bacteria are all slightly different and very different from the spectra of silver ions (silver nitrate and silver acetate), which confirms that a reaction occurs. Death or inactivation of bacteria was observed by plate counting and light microscopy. Silver bonding to sulfhydryl groups (Ag-S) in cysteine and Ag-N or Ag-O bonding in histidine, alanine, anddl-aspartic acid was detected by using synthesized silver-amino acids. Significantly lower silver-cysteine content, coupled with higher silver-histidine content, in Gram-positiveS. aureusandListeria monocytogenescells indicates that the peptidoglycan multilayer could be buffering the biocidal effect of silver on Gram-positive bacteria, at least in part. Bonding of silver to phosphate groups was not detected. Interaction with DNA or proteins can occur through Ag-N bonding. The formation of silver-cysteine can be confirmed for both bacterial cell types, which supports the hypothesis that enzyme-catalyzed reactions and the electron transport chain within the cell are disrupted.


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3287-3292 ◽  
Author(s):  
Akio Tani ◽  
Nurettin Sahin

Pink-pigmented, facultatively methylotrophic bacteria, strains 87eT and 99bT, were isolated from the bryophytes Haplocladium microphyllum and Brachythecium plumosum, respectively. The cells of both strains were Gram-reaction-negative, motile, non-spore-forming rods. On the basis of 16S rRNA gene sequence similarity, strains 87eT and 99bT were found to be related to Methylobacterium organophilum ATCC 27886T (97.1 % and 97.7 %, respectively). Strains 87eT and 99bT showed highest 16S rRNA gene similarity to Methylobacterium gnaphalii 23eT (98.3 and 99.0 %, respectively). The phylogenetic similarities to all other species of the genus Methylobacterium with validly published names were less than 97 %. Major cellular fatty acids of both strains were C18 : 1ω7c and C18 : 0. The results of DNA–DNA hybridization, phylogenetic analyses based on 16S rRNA and cpn60 gene sequences, fatty acid profiles, whole-cell matrix-assisted, laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strains 87eT and 99bT from their phylogenetically closest relatives. We propose that strains 87eT and 99bT represent novel species within the genus Methylobacterium , for which the names Methylobacterium haplocladii sp. nov. (type strain 87eT = DSM 24195T = NBRC 107714T) and Methylobacterium brachythecii sp. nov. (type strain 99bT = DSM 24105T = NBRC 107710T) are proposed.


2020 ◽  
Vol 70 (5) ◽  
pp. 3335-3339 ◽  
Author(s):  
Guanghua Wang ◽  
Dahao Tang ◽  
Guangyu Li ◽  
Shuailiang Xu ◽  
Ge Dang ◽  
...  

A Gram-stain-negative, non-spore-forming, aerobic, motile, curved rod-shaped bacterium, designed strain R148T was isolated from a coralline algae Tricleocarpa sp. collected from Weizhou island, PR China. The optimal growth of R148T occurred at 25 °C, pH 8–9 in the presence of 0.5 % (w/v) NaCl on the basis of amended marine broth 2216. The genomic DNA G+C content was 59.5 mol%. The only detected respiratory quinone was Q-10. The major polar lipids were phosphatidylmethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, and three unidentified ninhydrin-positive lipids. The major cellular fatty acids were C18 : 1ω7c, C16 : 1ω7c, C19 : 0cyclo 9, 10 DMA and C18 : 0. The results of 16S rRNA gene-based global alignment indicated that the closest neighbour of strain R148T was Pelagibius litoralis DSM 21314T (93.1 % similarity), the second is Limibacillus halophilus KCTC 42420T (92.2 %). The results of phylogenetic analysis indicated that R148T forms a distinct branch in the robust clade of R148T and P. litoralis DSM 21314T, while the taxonomic position of this clade in the family Rhodospirillaceae is ambiguous among phylogenetic approaches. The low 16S rRNA gene similarity and distinct polar lipid and cellular fatty acid profile could readily distinguish R148T from closely related type strains. So R148T is suggested to represent a novel species in a novel genus, for which the name Denitrobaculum tricleocarpae gen. nov., sp. nov. is proposed. The type strain is R148T (=MCCC 1K03781T=KCTC 72137T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2204-2210 ◽  
Author(s):  
Zhi Tian ◽  
Shan Lu ◽  
Dong Jin ◽  
Jing Yang ◽  
Ji Pu ◽  
...  

Two Gram-stain-positive, catalase-positive and oxidase-negative, aerobic, non-motile, cellobiose-utilizing, short-rod-shaped strains (Z28T and Z29) were isolated from faeces of Tibetan antelope (Pantholops hodgsonii) collected on the Qinghai–Tibet Plateau. Strain Z28T shared 98.1, 98.0, 97.8 and 97.4 % 16S rRNA gene similarity, 24.1, 22.8, 23.2 and 26.3 % digital DNA–DNA hybridization relatedness and 80.8, 80.0, 80.7 and 80.9 % average nucleotide identity values with Cellulomonas oligotrophica DSM 24482T, Cellulomonas flavigena DSM 20109T, Cellulomonas iranensis DSM 14785T and Cellulomonas terrae JCM 14899T, respectively. Results from further phylogenetic analyses based on the 16S rRNA gene and 148 core genes indicated that strains Z28T and Z29 were closest to C. oligotrophica DSM 24482T and C. flavigena DSM 20109T, but clearly separated from the currently recognized species of the genus Cellulomonas . The genomic DNA G+C content of strain Z28T was 75.3 mol%. The major cellular fatty acids were anteiso-C15 : 0, anteiso-C15 : 1 A, C16 : 0 and anteiso-C17 : 0. Ribose and mannose were detected as the whole-cell sugars. The major respiratory quinone was MK-9(H4) and ornithine was the diamino acid of the cell wall. The polar lipids present in strain Z28T were phosphatidylethanolamine, five phospholipids, two aminophospholipids, aminolipid and three unidentified lipids. Comparison of phenotypic and phylogenetic features between the two strains and the related organisms revealed that Z28T and Z29 represent a novel species of the genus Cellulomonas , for which the name Cellulomonas shaoxiangyii sp. nov. is proposed. The type strain is Z28T (=CGMCC 1.16477T=DSM 106200T).


2020 ◽  
Vol 70 (10) ◽  
pp. 5432-5438 ◽  
Author(s):  
Pawina Kanchanasin ◽  
Masahiro Yuki ◽  
Takuji Kudo ◽  
Moriya Ohkuma ◽  
Wongsakorn Phongsopitanun ◽  
...  

A novel actinomycete strain, CT2-14T, belonging to the genus Nocardia , was isolated from a soil sample collected from Phichit Province, Thailand. The taxonomic position of the strain was characterized using a polyphasic approach. The strain grew at 15–40 °C (optimum, 28–37 °C), pH 6–11 (optimum, pH 6–8) and on an International Streptomyces Project 2 with 4 % (w/v) NaCl agar plate. Meso-diaminopimelic acid was detected in the cell-wall peptidoglycan. Ribose, arabinose and galactose were detected in its whole-cell hydrolysates. Mycolic acids were present. The strain contained C16 : 0, summed feature 3, C17 : 0 10-methyl and C18 : 1 ω9c as the major fatty acids and MK-8(H4ω-cycl) as the major menaquinone. The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol mannosides. Strain CT2-14T showed the highest 16S rRNA gene similarity to Nocardia veterana JCM 11307T (98.4 %), Nocardia africana JCM 11438T (98.2 %) and Nocardia kruczakiae JCM 13032T (98.0 %). The draft genome of strain CT2-14T was 7.37 Mb with 6685 coding sequences with an average G+C content of 67.9 mol %. Based on the phylogenomic tree analysis, the strain was closely related to Nocardia niigatensis NBRC 100131T. On the basis of polyphasic and genome analyses, strain CT2-14T represented a novel species of the genus Nocardia for which the name Nocardia aurantiaca sp. nov. is proposed. The type strain is CT2-14T (=JCM 33775T=TISTR 2838T).


2020 ◽  
Vol 70 (10) ◽  
pp. 5235-5242 ◽  
Author(s):  
Soon Dong Lee ◽  
Hanna Choe ◽  
Ji-Sun Kim ◽  
In Seop Kim

A strictly aerobic, Gram-stain-negative, non-motile, ovoid- and rod-shaped bacterium, designated strain GH1-50T, was isolated from a tidal mudflat sample collected from Dongmak seashore on Gangwha Island, Republic of Korea. The organism showed growth at 20–40 °C (optimum, 30 °C), pH 7–8 (optimum, pH 7) and 2–6  % (w/v) NaCl (optimum, 5 %). The pufLM genes were present but bacteriochlorophyll a was not detected. The major isoprenoid quinone was Q-10. The polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, an unidentified aminolipid and five unidentified lipids. The predominant cellular fatty acids were C18 : 1  ω7c, C18 : 1  ω7c 11-methyl and C18 : 0. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that the isolate belonged to the family Rhodobacteraceae and was loosely associated with members of the recognized genera. The closest relative was the type strain of Pseudoruegeria marinistellae (96.8 % similarity) followed by Boseongicola aestuarii (96.4 %). Other members of the family shared 16S rRNA gene similarity values below 96.0 % to the novel isolate. The DNA G+C content calculated from the draft genome sequence was 64.0 %. The average amino acid identity, average nucleotide identity and digital DNA–DNA hybridization values between genome sequences of strain GH1-50T and all the type strains of the recognized taxa compared were <70.0, <84.1 and <20.5 %, respectively. Based on data obtained by a polyphasic approach, strain GH1-50T (=KCTC 72224T=NBRC 113929T) represents a novel species of a new genus in the family Rhodobacteraceae , for which the name Kangsaoukella pontilimi gen. nov., sp. nov. is proposed.


Author(s):  
Gui Zhang ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Dong Jin ◽  
Shan Lu ◽  
...  

Six novel facultatively anaerobic, Gram-stain-positive, rod-shaped, non-haemolytic bacteria (zg-320T/zg-336, zg-917T/zg-910 and zg-913T/zg-915) isolated from animal tissues and human faeces were found to belong to the genus Corynebacterium based on the phylogenetic analyses of 16S rRNA gene and 262 core genes set. Based on the greatest degree of 16S rRNA similarity, zg-320T/zg-336 had the highest 16S rRNA gene similarity to Corynebacterium falsenii DSM 44353T (97.51 %), zg-917T/zg-910 to Corynebacterium coyleae DSM 44184T (98.68 %), and zg-913T/zg-915 to Corynebacterium afermentans subsp. lipophilum CIP 103500T (98.79 %). The three novel type strains had a relatively high DNA G+C content (61.2–64.4 mol%), low DNA relatedness and ANI values with their respective neighbours: 23.5/72.7 %, 25.0/72.3%and 22.6/73.1 % (zg-320T vs. Corynebacterium auriscanis CIP 106629T, Corynebacterium resistens DSM 45100T and Corynebacterium suicordis DSM 45110T); 24.4/82.3% and 23.7/81.3 % (zg-917T vs. C. coyleae DSM 44184T and Corynebacterium jeddahense JCBT); 26.8/83.7% and 27.7/84.4 % (zg-913T vs. Corynebacterium mucifaciens ATCC 700355T and C. afermentans subsp. lipophilum CCUG 32105T). The three novel species had C16 : 0, C18 : 0, C18 : 1  ω9c and C18 : 0 ante/C18 : 2  ω6,9c as the major cellular fatty acids; MK-8(H2) in strain zg-917T and MK-9(H2) in strains zg-320T and zg-913T were found to be the major respiratory quinones. For the three novel species, the detected major polar lipids included diphosphatidylglycerol, phosphatidyl inositol mannoside, phosphatidylglycerol and phosphatidylinositol, the cell-wall peptidoglycan was based on meso-DAP, and the whole-cell sugars mainly included ribose, arabinose and galactose. The three novel species grew optimally at 35–37 °C, 0.5 % (w/v) NaCl and pH 7.0–8.0; notably, they were tolerant of 10.5 % (w/v) NaCl. Based on the results of these comprehensive analyses, three novel species in the genus Corynebacterium are proposed, aptly named Corynebacterium zhongnanshanii sp. nov. (zg-320T = GDMCC 1.1719T = JCM 34106T), Corynebacterium lujinxingii sp. nov. (zg-917T = GDMCC 1.1707T = JCM 34094T) and Corynebacterium wankanglinii sp. nov. (zg-913T = GDMCC 1.1706T = JCM 34398T).


Author(s):  
Wongsakorn Phongsopitanun ◽  
Pawina Kanchanasin ◽  
Paranee Sripreechasak ◽  
Kanokorn Rueangsawang ◽  
Anan Athipornchai ◽  
...  

Endophytic actinobacterial strain 3R004T was isolated from a root of Justicia subcoriacea collected in Thailand. In this report, the taxonomic position of this strain is described using a polyphasic approach. Based on the morphological characteristics and chemical composition of its cells, strain 3R004T was identified as a member of the genus Streptomyces . It produced a long chain of cylindrical spores on aerial mycelia. ll-Diaminopimelic acid was detected in the cell wall peptidoglycan. The menaquinones were MK-9(H4), MK-9(H6) and MK-9(H8). C16 : 0, iso-C16 : 0, anteiso-C15 : 0 and iso-C15 : 0 were detected as the major cellular fatty acids. Polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and one unidentified lipid. Strain 3R004T showed the highest 16S rRNA gene similarity of 99.45 % to Streptomyces cyaneochromogenes MK-45T. The phylogenomic results indicated that strain 3R004T was close to Streptomyces aquilus GGCR-6T and Streptomyces antibioticus DSM 40234T. The DNA–DNA hybridization and average nucleotide identity values among strain 3R004T and closely related Streptomyces species were 35.5–63.1 % and 82.7–94.3 %, respectively. The type strain produced actinomycin D antibiotic as the major secondary metabolite. The maximum productivity of the actinomycin D (378 mg l−1) was observed when the strain was grown in 301 broth at 30 °C, 180 r.p.m. for 12 days. On the basis of phenotypic and genotypic evidence, strain 3R004T represents a novel species of the genus Streptomyces , for which the name Streptomyces justiciae is proposed. The type strain is 3R004T (=LMG 32138T=TBRC 13128T=NBRC 115065T).


2016 ◽  
Vol 68 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Yawen Zhang ◽  
Zhipeng Li ◽  
Jincan Yan ◽  
Tianhui Ren ◽  
Yidong Zhao

Purpose – The aim of this paper is to study the tribological performance and self-repairing performance of surface-modified nanoscale serpentine powders as lubricant additives in the mineral base oil (5-CST). Design/methodology/approach – Fourier transform infrared spectroscopy spectra and thermo-gravimetric analysis of both modified and unmodified serpentine were performed to analyse their grafting ratio and suspension after modified using a long-chain naphthene aliphatic acid. The tribological properties of surface-modified serpentine as lubricant additives in 5-CST were evaluated and the worn surfaces were investigated by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES). Findings – The results show that the serpentine particles have high grafting ratio, improving the dispersity in 5-CST. When the serpentine concentration of 1.00 weight per cent is used as additives in 5-CST, friction coefficient reduces by 14.80 per cent under 294 N and wear scar diameter (WSD) decreases by 11.82 per cent. The results of X-ray absorption near edge structure and XANES show that the adsorption and tribochemical reactions occur to form self-repairing lubrication films. Originality/value – The paper illustrates a tribofilm form on the rubbed surface, which is responsible for the decrease in friction and wear, mainly containing iron oxides, silicon oxides, magnesium oxides and organic compounds. The results are useful for further applications in advanced environmental friendly lubricating oils and additives.


2014 ◽  
Vol 66 (3) ◽  
pp. 346-352 ◽  
Author(s):  
Jincan Yan ◽  
Xuefeng Bai ◽  
Jing Li ◽  
Tianhui Ren ◽  
Yidong Zhao

Purpose – The purpose of this paper is to investigate the tribological properties of novel phosphorous-nitrogen (P-N) type additives in water. Design/methodology/approach – The tribological properties of the novel P-N additives in water are compared with a commercial lubricant additive of the P-N type using a four-ball machine. The tribological mechanism was investigated by X-ray absorption near-edge structure (XANES) spectroscopy. Findings – The experimental results indicate that the phosphoramidate derivatives possess good anti-wear and friction-reducing properties. The XANES analysis shows that the prepared compounds can form a protective film containing phosphate and/or polyphosphate that affects the tribological behavior. Originality/value – The purpose of this paper is to investigate the tribological properties of the novel P-N type additives in water.


Sign in / Sign up

Export Citation Format

Share Document