scholarly journals Nitrogen Fixation by Vibrio parahaemolyticus and Its Implications for a New Ecological Niche

2007 ◽  
Vol 73 (18) ◽  
pp. 5959-5961 ◽  
Author(s):  
J. D. Criminger ◽  
T. H. Hazen ◽  
P. A. Sobecky ◽  
C. R. Lovell

ABSTRACT A Vibrio parahaemolyticus strain isolated from the rhizosphere of the ecosystem dominant estuarine grass, Spartina alterniflora, was characterized and shown to carry nifH, the gene encoding the nitrogenase iron protein, and to fix N2. Nitrogen fixation may contribute substantially to the adaptability, niche breadth, and ecological significance of V. parahaemolyticus.

1987 ◽  
Vol 169 (1) ◽  
pp. 367-370 ◽  
Author(s):  
I M Pretorius ◽  
D E Rawlings ◽  
E G O'Neill ◽  
W A Jones ◽  
R Kirby ◽  
...  

2001 ◽  
Vol 14 (7) ◽  
pp. 887-894 ◽  
Author(s):  
Boglárka Oláh ◽  
Erno Kiss ◽  
Zoltán Györgypál ◽  
Judit Borzi ◽  
Gyöngyi Cinege ◽  
...  

In specific plant organs, namely the root nodules of alfalfa, fixed nitrogen (ammonia) produced by the symbiotic partner Sinorhizobium meliloti supports the growth of the host plant in nitrogen-depleted environment. Here, we report that a derivative of S. meliloti carrying a mutation in the chromosomal ntrR gene induced nodules with enhanced nitrogen fixation capacity, resulting in an increased dry weight and nitrogen content of alfalfa. The efficient nitrogen fixation is a result of the higher expression level of the nifH gene, encoding one of the subunits of the nitrogenase enzyme, and nifA, the transcriptional regulator of the nif operon. The ntrR gene, controlled negatively by its own product and positively by the symbiotic regulator syrM, is expressed in the same zone of nodules as the nif genes. As a result of the nitrogen-tolerant phenotype of the strain, the beneficial effect of the mutation on efficiency is not abolished in the presence of the exogenous nitrogen source. The ntrR mutant is highly competitive in nodule occupancy compared with the wild-type strain. Sequence analysis of the mutant region revealed a new cluster of genes, termed the “ntrPR operon,” which is highly homologous to a group of vap-related genes of various pathogenic bacteria that are presumably implicated in bacterium-host interactions. On the basis of its favorable properties, the strain is a good candidate for future agricultural utilization.


2005 ◽  
Vol 73 (9) ◽  
pp. 5754-5761 ◽  
Author(s):  
Kwon-Sam Park ◽  
Michiko Arita ◽  
Tetsuya Iida ◽  
Takeshi Honda

ABSTRACT A histone-like nucleoid structure (H-NS) is a major component of the bacterial nucleoid and plays a crucial role in the global gene regulation of enteric bacteria. Here, we cloned and characterized the gene for the H-NS-like protein VpaH in Vibrio parahaemolyticus. vpaH encodes a protein of 134 amino acids that shows approximately 55%, 54%, and 41% identities with VicH in Vibrio cholerae, H-NS in V. parahaemolyticus, and H-NS in Escherichia coli, respectively. The vpaH gene was found in only trh-positive V. parahaemolyticus strains and not in Kanagawa-positive or in trh-negative environmental strains. Moreover, the G+C content of the vpaH gene was 38.6%, which is lower than the average G+C content of the whole genome of this bacterium (45.4%). These data suggest that vpaH was transmitted to trh-possessing V. parahaemolyticus strains by lateral transfer. The vpaH gene was located about 2.6 kb downstream of the trh gene, in the convergent direction of the trh transcription. An in-frame deletion mutant of vpaH lacked motility on semisolid motility assay plates. Western blot analysis and electron microscopy observations revealed that the mutant was deficient in lateral flagella biogenesis, whereas there was no defect in the expression of polar flagella. Additionally, the vpaH mutant showed a decreased adherence to HeLa cells and a decrease in biofilm formation compared with the wild-type strain. Introduction of the vpaH gene in the vpaH-negative strain increased the expression of lateral flagella compared with the wild-type strain. In conclusion, our findings suggest that VpaH affects lateral flagellum biogenesis in trh-positive V. parahaemolyticus strain TH3996.


Microbiology ◽  
2014 ◽  
Vol 160 (5) ◽  
pp. 929-940 ◽  
Author(s):  
Tomas Linder

Sixteen yeasts with sequenced genomes belonging to the ascomycete subphyla Saccharomycotina and Taphrinomycotina were assayed for their ability to utilize a variety of primary, secondary, tertiary and quartenary aliphatic amines as nitrogen sources. The results support a previously proposed pathway of quaternary amine catabolism whereby glycine betaine is first converted into choline, which is then cleaved to release trimethylamine, followed by stepwise demethylation of trimethylamine to release free ammonia. There were only a few instances of utilization of N-methylated glycine species (sarcosine and N,N-dimethylglycine), which suggests that this pathway is not intact in any of the species tested. The ability to utilize choline as a sole nitrogen source correlated strongly with the presence of a putative Rieske non-haem iron protein homologous to bacterial ring-hydroxylating oxygenases and plant choline monooxygenases. Deletion of the gene encoding the Rieske non-haem iron protein in the yeast Scheffersomyces stipitis abolished its ability to utilize choline as the sole nitrogen source, but did not affect its ability to use methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, ethanolamine or glycine as nitrogen sources. The gene was named CMO1 for putative choline monooxygenase 1. A bioinformatic survey of eukaryotic genomes showed that CMO1 homologues are found throughout the eukaryotic domain.


Sign in / Sign up

Export Citation Format

Share Document