scholarly journals The Basis of Peracetic Acid Inactivation Mechanisms for Rotavirus and Tulane Virus under Conditions Relevant for Vegetable Sanitation

2020 ◽  
Vol 86 (19) ◽  
Author(s):  
Miyu Fuzawa ◽  
Hezi Bai ◽  
Joanna L. Shisler ◽  
Thanh H. Nguyen

ABSTRACT We determined the disinfection efficacy and inactivation mechanisms of peracetic acid (PAA)-based sanitizer using pH values relevant for vegetable sanitation against rotavirus (RV) and Tulane virus (TV; a human norovirus surrogate). TV was significantly more resistant to PAA disinfection than RV: for a 2-log10 reduction of virus titer, RV required 1 mg/liter PAA for 3.5 min of exposure, while TV required 10 mg/liter PAA for 30 min. The higher resistance of TV can be explained, in part, by significantly more aggregation of TV in PAA solutions. The PAA mechanisms of virus inactivation were explored by quantifying (i) viral genome integrity and replication using reverse transcription-quantitative PCR (RT-qPCR) and (ii) virus-host receptor interactions using a cell-free binding assay with porcine gastric mucin conjugated with magnetic beads (PGM-MBs). We observed that PAA induced damage to both RV and TV genomes and also decreased virus-receptor interactions, with the latter suggesting that PAA damages viral proteins important for binding its host cell receptors. Importantly, the levels of genome-versus-protein damage induced by PAA were different for each virus. PAA inactivation correlated with higher levels of RV genome damage than of RV-receptor interactions. For PAA-treated TV, the opposite trends were observed. Thus, PAA inactivates each of these viruses via different molecular mechanisms. The findings presented here potentially contribute to the design of a robust sanitation strategy for RV and TV using PAA to prevent foodborne disease. IMPORTANCE In this study, we examined the inactivation mechanisms of peracetic acid (PAA), a sanitizer commonly used for postharvest vegetable washing, for two enteric viruses: Tulane virus (TV) as a human norovirus surrogate and rotavirus (RV). PAA disinfection mechanisms for RV were mainly due to genome damage. In contrast, PAA disinfection in TV was due to damage of the proteins important for binding to its host receptor. We also observed that PAA triggered aggregation of TV to a much greater extent than RV. These studies demonstrate that different viruses are inactivated via different PAA mechanisms. This information is important for designing an optimal sanitation practice for postharvest vegetable washing to minimize foodborne viral diseases.

2014 ◽  
Vol 80 (7) ◽  
pp. 2248-2253 ◽  
Author(s):  
Mu Ye ◽  
Xinhui Li ◽  
David H. Kingsley ◽  
Xi Jiang ◽  
Haiqiang Chen

ABSTRACTHuman norovirus (NoV) is the most frequent causative agent of food-borne disease associated with shellfish consumption. In this study, the effect of high hydrostatic pressure (HHP) on inactivation of NoV was determined. Genogroup I.1 (GI.1) or genogroup II.4 (GII.4) NoV was inoculated into oyster homogenates and treated at 300 to 600 MPa at 25, 6, and 1°C for 5 min. After HHP, samples were treated with RNase and viral particles were extracted with porcine gastric mucin (PGM)-conjugated magnetic beads (PGM-MBs). Viral RNA was then quantified by real-time reverse transcription (RT)-PCR. Since PGM contains histo-blood group-like antigens, which can act as receptors for NoV, deficiency for binding to PGM is an indication of loss of infectivity of NoV. After binding to PGM-MBs, RT-PCR-detectable NoV RNA in oysters was reduced by 0.4 to >4 log10by HHP at 300 to 600 MPa. The GI.1 NoV was more resistant to HHP than the GII.4 NoV (P< 0.05). HHP at lower temperatures significantly enhanced the inactivation of NoV in oysters (P< 0.05). Pressure treatment was also conducted for clam homogenates. Treatment at 450 MPa at 1°C achieved a >4 log10reduction of GI.1 NoV in both oyster and clam homogenates. It is therefore concluded that HHP could be applied as a potential intervention for inactivating NoV in raw shellfish. The method of pretreatment of samples with RNase, extraction of viral particles using PGM-MB binding, and quantification of viral RNA using RT-PCR can be explored as a practical means of distinguishing between infectious and noninfectious NoV.


2021 ◽  
Author(s):  
Chamteut Oh ◽  
Kyukyoung Kim ◽  
Elbashir Araud ◽  
Leyi Wang ◽  
Joanna L. Shisler ◽  
...  

AbstractViruses are present at low concentrations in wastewater, and therefore an effective concentration of virus particles is necessary for accurate wastewater-based epidemiology (WBE). We designed a novel approach to concentrate human and animal viruses from wastewater using porcine gastric mucin-conjugated magnetic beads (PGM-MBs). We systematically evaluated the performances of the PGM-MBs method (sensitivity, specificity, and robustness to environmental inhibitors) with six viral species including Tulane virus (a surrogate for human norovirus), rotavirus, adenovirus, porcine coronavirus (transmissible gastroenteritis virus or TGEV), and two human coronaviruses (NL63 and SARS-CoV-2) in influent wastewater and raw sewage samples. We determined the multiplication factor (the ratio of genome concentration of the concentrated over that of the initial solution) for the PGM-MBs method, which ranged from 1.3 to 64.0 depending on the viral species. Because the recovery efficiency became significantly higher when calculated based on virus titers than genome concentration, the PGM-MBs method could be an appropriate tool for assessing the risk due to wastewater contaminated with infectious enteric viruses. PCR inhibitors were not concentrated by PGM-MBs, suggesting this tool will be successful for use with environmental samples. The PGM-MBs method is cost-effective (0.43 USD/sample) and fast turnaround (3 hours from virus concentration to genome quantification), and thus this method can be implemented for high throughput facilities. Based on good performance, intrinsic characteristics of targeting the infectious virus, robustness to wastewater, and adaptability to high throughput systems, we are confident that the PGM-MBs method can be applied for successful WBE and ultimately provides valuable public health information.Graphical abstract


Author(s):  
Candace Barnes ◽  
Rebecca Barber ◽  
Keith R. Schneider ◽  
Michelle D. Danyluk ◽  
Anita C. Wright ◽  
...  

Human norovirus (HuNoV) is the leading causative agent of foodborne outbreaks and is associated with the second most prevalent cause of waterborne infections in the United States. The goal of this research was to investigate the antiviral activity of chitosan microparticles (CM) against HuNoV GII.4 Sydney and its cultivable surrogate, Tulane virus (TuV), in suspensions mimicking fecally-contaminated water. CM was prepared by crosslinking chitosan molecules with sodium sulfate, and then its anti-noroviral activity was assessed using infectivity assay on TuV and RT-qPCR on TuV and HuNoV. A 3% CM suspension in PBS (pH 7.2) showed binding to TuV particles but with a negligible impact on virus infectivity (p&gt;0.05). TuV and HuNoV suspended in fecal suspensions showed a 1.5-log10 reduction in genomic copies per ml following a 10-min contact time (p&lt;0.05). Despite the negligible impact on viral infectivity, CM moderately binds to virus particles and helps purify environmental water by removing infectious virus particles. In this study, TuV served as a suitable surrogate for HuNoV by showing a similar log10 reduction in fecal suspension. Overall, the outcomes of thisresearch highlight the potential application of CM as a novel, natural treatment to minimize the spread of water-transmitted viral pathogens.


2018 ◽  
Vol 11 (1) ◽  
pp. 76-89 ◽  
Author(s):  
Nathan Dunkin ◽  
Caroline Coulter ◽  
ShihChi Weng ◽  
Joseph G. Jacangelo ◽  
Kellogg J. Schwab

2015 ◽  
Vol 81 (11) ◽  
pp. 3612-3622 ◽  
Author(s):  
Hamada A. Aboubakr ◽  
Paul Williams ◽  
Urvashi Gangal ◽  
Mohammed M. Youssef ◽  
Sobhy A. A. El-Sohaimy ◽  
...  

ABSTRACTMinimal food-processing methods are not effective against foodborne viruses, such as human norovirus (NV). It is important, therefore, to explore novel nonthermal technologies for decontamination of foods eaten fresh, minimally processed and ready-to-eat foods, and food contact surfaces. We studied thein vitrovirucidal activity of cold atmospheric gaseous plasma (CGP) against feline calicivirus (FCV), a surrogate of NV. Factors affecting the virucidal activity of CGP (a so-called radio frequency atmospheric pressure plasma jet) were the plasma generation power, the exposure time and distance, the plasma feed gas mixture, and the virus suspension medium. Exposure to 2.5-W argon (Ar) plasma caused a 5.55 log10unit reduction in the FCV titer within 120 s. The reduction in the virus titer increased with increasing exposure time and decreasing exposure distance. Of the four plasma gas mixtures studied (Ar, Ar plus 1% O2, Ar plus 1% dry air, and Ar plus 0.27% water), Ar plus 1% O2plasma treatment had the highest virucidal effect: more than 6.0 log10units of the virus after 15 s of exposure. The lowest virus reduction was observed with Ar plus 0.27% water plasma treatment (5 log10unit reduction after 120 s). The highest reduction in titer was observed when the virus was suspended in distilled water. Changes in temperature and pH and formation of H2O2were not responsible for the virucidal effect of plasma. The oxidation of viral capsid proteins by plasma-produced reactive oxygen and nitrogen species in the solution was thought to be responsible for the virucidal effect. In conclusion, CGP exhibits virucidal activityin vitroand has the potential to combat viral contamination in foods and on food preparation surfaces.


2017 ◽  
Vol 51 (20) ◽  
pp. 11918-11927 ◽  
Author(s):  
Nathan Dunkin ◽  
ShihChi Weng ◽  
Caroline G. Coulter ◽  
Joseph G. Jacangelo ◽  
Kellogg J. Schwab

2013 ◽  
Vol 201 (3) ◽  
pp. 395-408 ◽  
Author(s):  
Valérie Bergoglio ◽  
Anne-Sophie Boyer ◽  
Erin Walsh ◽  
Valeria Naim ◽  
Gaëlle Legube ◽  
...  

Human DNA polymerase η (Pol η) is best known for its role in responding to UV irradiation–induced genome damage. We have recently observed that Pol η is also required for the stability of common fragile sites (CFSs), whose rearrangements are considered a driving force of oncogenesis. Here, we explored the molecular mechanisms underlying this newly identified role. We demonstrated that Pol η accumulated at CFSs upon partial replication stress and could efficiently replicate non-B DNA sequences within CFSs. Pol η deficiency led to persistence of checkpoint-blind under-replicated CFS regions in mitosis, detectable as FANCD2-associated chromosomal sites that were transmitted to daughter cells in 53BP1-shielded nuclear bodies. Expression of a catalytically inactive mutant of Pol η increased replication fork stalling and activated the replication checkpoint. These data are consistent with the requirement of Pol η–dependent DNA synthesis during S phase at replication forks stalled in CFS regions to suppress CFS instability by preventing checkpoint-blind under-replicated DNA in mitosis.


Sign in / Sign up

Export Citation Format

Share Document