scholarly journals Development of Multiple-Locus Variable-Number Tandem-Repeat Analysis for Molecular Subtyping of Campylobacter jejuni by Using Capillary Electrophoresis

2015 ◽  
Vol 81 (16) ◽  
pp. 5318-5325 ◽  
Author(s):  
Punnida Techaruvichit ◽  
Hajime Takahashi ◽  
Mongkol Vesaratchavest ◽  
Suwimon Keeratipibul ◽  
Takashi Kuda ◽  
...  

ABSTRACTCampylobacter jejuniis a common cause of the frequently reported food-borne diseases in developed and developing nations. This study describes the development of multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) using capillary electrophoresis as a novel typing method for microbial source tracking and epidemiological investigation ofC. jejuni. Among 36 tandem repeat loci detected by the Tandem Repeat Finder program, 7 VNTR loci were selected and used for characterizing 60 isolates recovered from chicken meat samples from retail shops, samples from chicken meat processing factory, and stool samples. The discrimination ability of MLVA was compared with that of multilocus sequence typing (MLST). MLVA (diversity index of 0.97 with 31 MLVA types) provided slightly higher discrimination than MLST (diversity index of 0.95 with 25 MLST types). The overall concordance between MLVA and MLST was estimated at 63% by adjusted Rand coefficient. MLVA predicted MLST type better than MLST predicted MLVA type, as reflected by Wallace coefficient (Wallace coefficient for MLVA to MLST versus MLST to MLVA, 86% versus 51%). MLVA is a useful tool and can be used for effective monitoring ofC. jejuniand investigation of epidemics caused byC. jejuni.

2013 ◽  
Vol 79 (20) ◽  
pp. 6472-6480 ◽  
Author(s):  
S. Saleh-Lakha ◽  
V. G. Allen ◽  
J. Li ◽  
F. Pagotto ◽  
J. Odumeru ◽  
...  

ABSTRACTListeria monocytogenesis responsible for severe and often fatal food-borne infections in humans. A collection of 2,421L. monocytogenesisolates originating from Ontario's food chain between 1993 and 2010, along with Ontario clinical isolates collected from 2004 to 2010, was characterized using an improved multilocus variable-number tandem-repeat analysis (MLVA). The MLVA method was established based on eight primer pairs targeting seven variable-number tandem-repeat (VNTR) loci in two 4-plex fluorescent PCRs. Diversity indices and amplification rates of the individual VNTR loci ranged from 0.38 to 0.92 and from 0.64 to 0.99, respectively. MLVA types and pulsed-field gel electrophoresis (PFGE) patterns were compared using Comparative Partitions analysis involving 336 clinical and 99 food and environmental isolates. The analysis yielded Simpson's diversity index values of 0.998 and 0.992 for MLVA and PFGE, respectively, and adjusted Wallace coefficients of 0.318 when MLVA was used as a primary subtyping method and 0.088 when PFGE was a primary typing method. Statistical data analysis using BioNumerics allowed for identification of at least 8 predominant and persistentL. monocytogenesMLVA types in Ontario's food chain. The MLVA method correctly clustered epidemiologically related outbreak strains and separated unrelated strains in a subset analysis. An MLVA database was established for the 2,421L. monocytogenesisolates, which allows for comparison of data among historical and new isolates of different sources. The subtyping method coupled with the MLVA database will help in effective monitoring/prevention approaches to identify environmental contamination by pathogenic strains ofL. monocytogenesand investigation of outbreaks.


2017 ◽  
Vol 56 (1) ◽  
Author(s):  
Yoshiro Murase ◽  
Kiyohiko Izumi ◽  
Akihiro Ohkado ◽  
Akio Aono ◽  
Kinuyo Chikamatsu ◽  
...  

ABSTRACT Strain genotyping based on the variable-number tandem repeat (VNTR) is widely applied for identifying the transmission of Mycobacterium tuberculosis. A consensus set of four hypervariable loci (1982, 3232, 3820, and 4120) has been proposed to improve the discrimination of Beijing lineage strains. Herein, we evaluated the utility of these four hypervariable loci for tracing local tuberculosis transmission in 981 cases over a 14-month period in Japan (2010 to 2011). We used six different VNTR systems, with or without the four hypervariable loci. Patient ages and weighted standard distances (a measure of the dispersion of genotype-clustered cases) were used as proxies for estimating local tuberculosis transmission. The highest levels of isolate discrimination were achieved with VNTR systems that incorporated the four hypervariable loci (i.e., the Japan Anti-Tuberculosis Association [JATA]18-VNTR, mycobacterial interspersed repetitive unit [MIRU]28-VNTR, and 24Beijing-VNTR). The clustering rates by JATA12-VNTR, MIRU15-VNTR, JATA15-VNTR, JATA18-VNTR, MIRU28-VNTR, and 24Beijing-VNTR systems were 52.2%, 51.0%, 39.0%, 24.1%, 23.1%, and 22.0%, respectively. As the discriminative power increased, the median weighted standard distances of the clusters tended to decrease (from 311 to 80 km, P < 0.001, Jonckheere-Terpstra trend test). Concurrently, the median ages of patients in the clusters tended to decrease (from 68 to 60 years, P < 0.001, Jonckheere-Terpstra trend test). These findings suggest that strain typing using the four hypervariable loci improves the prediction of active local tuberculosis transmission. The four-locus set can therefore contribute to the targeted control of tuberculosis in settings with high prevalence of Beijing lineage strains.


2018 ◽  
Vol 56 (11) ◽  
Author(s):  
Inge Roof ◽  
Rana Jajou ◽  
Miranda Kamst ◽  
Arnout Mulder ◽  
Albert de Neeling ◽  
...  

ABSTRACTThe variable-number tandem-repeat (VNTR) typing method is used to study tuberculosis (TB) transmission. Clustering ofMycobacterium tuberculosisisolates with identical VNTR patterns is assumed to reflect recent transmission. Hence, clusters are thought to be homogeneous regarding antibiotic resistance. In practice, however, heterogeneous clusters are also identified. This study investigates the prevalence and characteristics of heterogeneous VNTR clusters and assesses whether isolates in these clusters remain clustered when subjected to whole-genome sequencing (WGS). In the period from 2004 to 2016, 9,072 isolates were included. Demographic and epidemiological linkage data were obtained from the Netherlands Tuberculosis Register. VNTR clusters were defined as homogeneous when isolates shared identical resistance profiles or as heterogeneous if both susceptible and (variable) resistant isolates were found. Multivariate logistic regression analysis was performed to identify factors associated with heterogeneous clustering. Isolates from 2016 were subjected to WGS, and a genetic distance of 12 single nucleotide polymorphisms (SNPs) was used as the cutoff for WGS clustering. In total, 4,661/9,072 (51%) isolates were clustered into 985 different VNTR clusters, of which 217 (22%) were heterogeneous. Patient characteristics associated with heterogeneous clustering were non-Dutch ethnicity (odds ratio [OR], 1.46 [95% confidence interval {CI}, 1.22 to 1.75]), asylum seeker (OR, 1.51 [95% CI, 1.24 to 1.85]), extrapulmonary TB (OR, 1.26 [95% CI, 1.09 to 1.46]), previous TB diagnosis (OR, 1.38 [95% CI, 1.04 to 1.82]), and not being a contact of a TB patient (OR, 1.35 [95% CI, 1.08 to 1.69]). With WGS, 34% of heterogeneous and 78% of homogeneous isolates from 2016 remained clustered. Heterogeneous VNTR clusters are common but seem to be explained by a substantial degree of false clustering by VNTR typing compared to WGS.


2008 ◽  
Vol 73 (2) ◽  
pp. 111-117 ◽  
Author(s):  
Alexander J. Nederbragt ◽  
Anusha Balasingham ◽  
Reidun Sirevåg ◽  
Hans Utkilen ◽  
Kjetill S. Jakobsen ◽  
...  

2009 ◽  
Vol 75 (12) ◽  
pp. 4079-4088 ◽  
Author(s):  
Erika Harth-Chu ◽  
Romilio T. Espejo ◽  
Richard Christen ◽  
Carlos A. Guzmán ◽  
Manfred G. Höfle

ABSTRACT Epidemics of Vibrio parahaemolyticus in Chile have occurred since 1998. Direct genome restriction enzyme analysis (DGREA) using conventional gel electrophoresis permitted discrimination of different V. parahaemolyticus isolates obtained from these outbreaks and showed that this species consists of a highly diverse population. A multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) approach was developed and applied to 22 clinical and 91 environmental V. parahaemolyticus isolates from Chile to understand their clonal structures. To this end, an advanced molecular technique was developed by applying multiplex PCR, fluorescent primers, and capillary electrophoresis, resulting in a high-resolution and high-throughput (HRHT) genotyping method. The genomic basis of this HRHT method was eight VNTR loci described previously by Kimura et al. (J. Microbiol. Methods 72:313-320, 2008) and two new loci which were identified by a detailed molecular study of 24 potential VNTR loci on both chromosomes. The isolates of V. parahaemolyticus belonging to the same DGREA pattern were distinguishable by the size variations in the indicative 10 VNTRs. This assay showed that these 10 VNTR loci were useful for distinguishing isolates of V. parahaemolyticus that had different DGREA patterns and also isolates that belong to the same group. Isolates that differed in their DGREA patterns showed polymorphism in their VNTR profiles. A total of 81 isolates was associated with 59 MLVA groups, providing fine-scale differentiation, even among very closely related isolates. The developed approach enables rapid and high-resolution analysis of V. parahaemolyticus with pandemic potential and provides a new surveillance tool for food-borne pathogens.


2004 ◽  
Vol 186 (16) ◽  
pp. 5496-5505 ◽  
Author(s):  
Leo M. Schouls ◽  
Han G. J. van der Heide ◽  
Luc Vauterin ◽  
Paul Vauterin ◽  
Frits R. Mooi

ABSTRACT Bordetella pertussis, the causative agent of whooping cough, has remained endemic in The Netherlands despite extensive nationwide vaccination since 1953. In the 1990s, several epidemic periods have resulted in many cases of pertussis. We have proposed that strain variation has played a major role in the upsurges of this disease in The Netherlands. Therefore, molecular characterization of strains is important in identifying the causes of pertussis epidemiology. For this reason, we have developed a multiple-locus variable-number tandem repeat analysis (MLVA) typing system for B. pertussis. By combining the MLVA profile with the allelic profile based on multiple-antigen sequence typing, we were able to further differentiate strains. The relationships between the various genotypes were visualized by constructing a minimum spanning tree. MLVA of Dutch strains of B. pertussis revealed that the genotypes of the strains isolated in the prevaccination period were diverse and clearly distinct from the strains isolated in the 1990s. Furthermore, there was a decrease in diversity in the strains from the late 1990s, with a remarkable clonal expansion that coincided with the epidemic periods. Using this genotyping, we have been able to show that B. pertussis is much more dynamic than expected.


2020 ◽  
Vol 249 ◽  
pp. 108836
Author(s):  
Dorottya Földi ◽  
Katinka Bekő ◽  
Orsolya Felde ◽  
Zsuzsa Kreizinger ◽  
Áron B. Kovács ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document