scholarly journals Biological Role of Pigment Production for the Bacterial Phytopathogen Pantoea stewartii subsp. stewartii

2012 ◽  
Vol 78 (19) ◽  
pp. 6859-6865 ◽  
Author(s):  
Mojtaba Mohammadi ◽  
Lindsey Burbank ◽  
M. Caroline Roper

ABSTRACTPantoea stewartiisubsp.stewartii, the causal agent of Stewart's wilt of sweet corn, produces a yellow carotenoid pigment. A nonpigmented mutant was selected from a bank of mutants generated by random transposon mutagenesis. The transposon insertion site was mapped to thecrtBgene, encoding a putative phytoene synthase, an enzyme involved in the early steps of carotenoid biosynthesis. We demonstrate here that the carotenoid pigment imparts protection against UV radiation and also contributes to the complete antioxidant pathway ofP. stewartii. Moreover, production of this pigment is regulated by the EsaI/EsaR quorum-sensing system and significantly contributes to the virulence of the pathogenin planta.

2014 ◽  
Vol 81 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Lindsey Burbank ◽  
Mojtaba Mohammadi ◽  
M. Caroline Roper

ABSTRACTIron is a key micronutrient for microbial growth but is often present in low concentrations or in biologically unavailable forms. Many microorganisms overcome this challenge by producing siderophores, which are ferric-iron chelating compounds that enable the solubilization and acquisition of iron in a bioactive form.Pantoeastewartiisubsp.stewartii, the causal agent of Stewart's wilt of sweet corn, produces a siderophore under iron-limiting conditions. The proteins involved in the biosynthesis and export of this siderophore are encoded by theiucABCD-iutAoperon, which is homologous to the aerobactin biosynthetic gene cluster found in a number of enteric pathogens. Mutations iniucAandiutAresulted in a decrease in surface-based motility thatP. stewartiiutilizes during the early stages of biofilm formation, indicating that active iron acquisition impacts surface motility forP. stewartii. Furthermore, bacterial movementin plantais also dependent on a functional siderophore biosynthesis and uptake pathway. Most notably, siderophore-mediated iron acquisition is required for full virulence in the sweet corn host, indicating that active iron acquisition is essential for pathogenic fitness for this important xylem-dwelling bacterial pathogen.


2015 ◽  
Vol 28 (12) ◽  
pp. 1374-1382 ◽  
Author(s):  
M. Caroline Roper ◽  
Lindsey P. Burbank ◽  
Kayla Williams ◽  
Polrit Viravathana ◽  
Hsin-Yu Tien ◽  
...  

Pantoea stewartii subsp. stewartii is the etiological agent of Stewart’s wilt and is a serious bacterial pathogen affecting sweet corn. During the leaf blight phase, P. stewartii colonizes the leaf apoplast and causes a characteristic water-soaked lesion. The Hrp type III secretion system has been implicated in the water-soaking phenotype, and the goal of this study was to investigate other potential factors that contribute to the plant cellular disruption associated with these lesions. The P. stewartii genome contains a gene encoding a large repetitive RTX toxin, designated rtx2. RTX toxins comprise a large family of pore-forming proteins, which are widely distributed among gram-negative bacteria. These cytotoxins usually lyse their target host cells and cause significant tissue damage as a consequence. We hypothesized that this RTX-like toxin plays a role in the water-soaking phase of infection due to its predicted cytolytic properties. Based on the data reported here, we conclude that RTX2 contributes significantly to the development of water-soaked lesions and leakage of plant cellular contents and is an important pathogenicity factor for P. stewartii.


2001 ◽  
Vol 14 (10) ◽  
pp. 1223-1234 ◽  
Author(s):  
Musharaf Ahmad ◽  
Doris R. Majerczak ◽  
Sharon Pike ◽  
Mary Elizabeth Hoyos ◽  
Anton Novacky ◽  
...  

Pantoea stewartii subsp. stewartii causes Stewart's wilt of sweet corn. A hypersensitive response and pathogenicity (Hrp) secretion system is needed to produce water-soaking and wilting symptoms in corn and to cause a hypersensitive response (HR) in tobacco. Sequencing of the hrp cluster revealed a putative harpin gene, hrpN. The product of this gene was overexpressed in Escherichia coli and shown to elicit the HR in tobacco and systemic resistance in radishes. The protein was designated HrpNPnss. Like other harpins, it was heat stable and protease sensitive, although it was three- to fourfold less active biologically than Erwinia amylovora harpin. We used antibodies to purified HrpNPnss to verify that hrpN mutants could not produce harpin. This protein was secreted into the culture supernatant and was produced by strains of P. stewartii subsp. indologenes. In order to determine the importance of HrpNPnss in pathogenesis on sweet corn, three hrpN::Tn5 mutants were compared with the wild-type strain with 50% effective dose, disease severity, response time, and growth rate in planta as parameters. In all tests, HrpNPnss was not required for infection, growth, or virulence in corn or endophytic growth in related grasses.


2012 ◽  
Vol 11 (8) ◽  
pp. 1055-1066 ◽  
Author(s):  
Matthias Kretschmer ◽  
Jana Klose ◽  
James W. Kronstad

ABSTRACTAn understanding of metabolic adaptation during the colonization of plants by phytopathogenic fungi is critical for developing strategies to protect crops. Lipids are abundant in plant tissues, and fungal phytopathogens in the phylum basidiomycota possess both peroxisomal and mitochondrial β-oxidation pathways to utilize this potential carbon source. Previously, we demonstrated a role for the peroxisomal β-oxidation enzyme Mfe2 in the filamentous growth, virulence, and sporulation of the maize pathogenUstilago maydis. However,mfe2mutants still caused disease symptoms, thus prompting a more detailed investigation of β-oxidation. We now demonstrate that a defect in thehad1gene encoding hydroxyacyl coenzyme A dehydrogenase for mitochondrial β-oxidation also influences virulence, although its paralog,had2, makes only a minor contribution. Additionally, we identified a gene encoding a polypeptide with similarity to the C terminus of Mfe2 and designated it Mfe2b; this gene makes a contribution to virulence only in the background of anmfe2Δ mutant. We also show that short-chain fatty acids induce cell death inU. maydisand that a block in β-oxidation leads to toxicity, likely because of the accumulation of toxic intermediates. Overall, this study reveals that β-oxidation has a complex influence on the formation of disease symptoms byU. maydisthat includes potential metabolic contributions to proliferationin plantaand an effect on virulence-related morphogenesis.


2006 ◽  
Vol 74 (2) ◽  
pp. 931-939 ◽  
Author(s):  
P. Hudson ◽  
T. S. Gorton ◽  
L. Papazisi ◽  
K. Cecchini ◽  
S. Frasca ◽  
...  

ABSTRACT To effectively analyze Mycoplasma gallisepticum for virulence-associated determinants, the ability to create stable genetic mutations is essential. Global M. gallisepticum mutagenesis is currently limited to the use of transposons. Using the gram-positive transposon Tn4001mod, a mutant library of 110 transformants was constructed and all insertion sites were mapped. To identify transposon insertion points, a unique primer directed outward from the end of Tn4001mod was used to sequence flanking genomic regions. By comparing sequences obtained in this manner to the annotated M. gallisepticum genome, the precise locations of transposon insertions were discerned. After determining the transposon insertion site for each mutant, unique reverse primers were synthesized based on the specific sequences, and PCR was performed. The resultant amplicons were used as unique Tn4001mod mutant identifiers. This procedure is referred to as signature sequence mutagenesis (SSM). SSM permits the comprehensive screening of the M. gallisepticum genome for the identification of novel virulence-associated determinants from a mixed mutant population. To this end, chickens were challenged with a pool of 27 unique Tn4001mod mutants. Two weeks postinfection, the birds were sacrificed, and organisms were recovered from respiratory tract tissues and screened for the presence or absence of various mutants. SSM is a negative-selection screening technique whereby those mutants possessing transposon insertions in genes essential for in vivo survival are not recovered from the host. We have identified a virulence-associated gene encoding dihydrolipoamide dehydrogenase (lpd). A transposon insertion in the middle of the coding sequence resulted in diminished biologic function and reduced virulence of the mutant designated Mg 7.


mSphere ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Alexandra O. Johnson ◽  
Valerie Forsyth ◽  
Sara N. Smith ◽  
Brian S. Learman ◽  
Aimee L. Brauer ◽  
...  

ABSTRACT Providencia stuartii is a common cause of polymicrobial catheter-associated urinary tract infection (CAUTI), and yet literature describing the molecular mechanisms of its pathogenesis is limited. To identify factors important for colonization during single-species infection and during polymicrobial infection with a common cocolonizer, Proteus mirabilis, we created a saturating library of ∼50,000 transposon mutants and conducted transposon insertion site sequencing (Tn-Seq) in a murine model of CAUTI. P. stuartii strain BE2467 carries 4,398 genes, 521 of which were identified as essential for growth in laboratory medium and therefore could not be assessed for contribution to infection. Using an input/output fold change cutoff value of 20 and P values of <0.05, 340 genes were identified as important for establishing single-species infection only and 63 genes as uniquely important for polymicrobial infection with P. mirabilis, and 168 genes contributed to both single-species and coinfection. Seven mutants were constructed for experimental validation of the primary screen that corresponded to flagella (fliC mutant), twin arginine translocation (tatC), an ATP-dependent protease (clpP), d-alanine-d-alanine ligase (ddlA), type 3 secretion (yscI and sopB), and type VI secretion (impJ). Infection-specific phenotypes validated 6/7 (86%) mutants during direct cochallenge with wild-type P. stuartii and 3/5 (60%) mutants during coinfection with P. mirabilis, for a combined validation rate of 9/12 (75%). Tn-Seq therefore successfully identified genes that contribute to fitness of P. stuartii within the urinary tract, determined the impact of coinfection on fitness requirements, and added to the identification of a collection of genes that may contribute to fitness of multiple urinary tract pathogens. IMPORTANCE Providencia stuartii is a common cause of polymicrobial catheter-associated urinary tract infections (CAUTIs), particularly during long-term catheterization. However, little is known regarding the pathogenesis of this organism. Using transposon insertion site sequencing (Tn-Seq), we performed a global assessment of P. stuartii fitness factors for CAUTI while simultaneously determining how coinfection with another pathogen alters fitness requirements. This approach provides four important contributions to the field: (i) the first global estimation of P. stuartii genes essential for growth in laboratory medium, (ii) identification of novel fitness factors for P. stuartii colonization of the catheterized urinary tract, (iii) identification of core fitness factors for both single-species and polymicrobial CAUTI, and (iv) assessment of conservation of fitness factors between common uropathogens. Genomewide assessment of the fitness requirements for common uropathogens during single-species and polymicrobial CAUTI thus elucidates complex interactions that contribute to disease severity and will uncover conserved targets for therapeutic intervention.


2017 ◽  
Vol 199 (16) ◽  
Author(s):  
Mark T. Anderson ◽  
Lindsay A. Mitchell ◽  
Harry L. T. Mobley

ABSTRACT Serratia marcescens causes health care-associated opportunistic infections that can be difficult to treat due to a high incidence of antibiotic resistance. One of the many secreted proteins of S. marcescens is the PhlA phospholipase enzyme. Genes involved in the production and secretion of PhlA were identified by screening a transposon insertion library for phospholipase-deficient mutants on phosphatidylcholine-containing medium. Mutations were identified in four genes (cyaA, crp, fliJ, and fliP) that are involved in the flagellum-dependent PhlA secretion pathway. An additional phospholipase-deficient isolate harbored a transposon insertion in the cysE gene encoding a predicted serine O-acetyltransferase required for cysteine biosynthesis. The cysE requirement for extracellular phospholipase activity was confirmed using a fluorogenic phospholipase substrate. Phospholipase activity was restored to the cysE mutant by the addition of exogenous l-cysteine or O-acetylserine to the culture medium and by genetic complementation. Additionally, phlA transcript levels were decreased 6-fold in bacteria lacking cysE and were restored with added cysteine, indicating a role for cysteine-dependent transcriptional regulation of S. marcescens phospholipase activity. S. marcescens cysE mutants also exhibited a defect in swarming motility that was correlated with reduced levels of flhD and fliA flagellar regulator gene transcription. Together, these findings suggest a model in which cysteine is required for the regulation of both extracellular phospholipase activity and surface motility in S. marcescens. IMPORTANCE Serratia marcescens is known to secrete multiple extracellular enzymes, but PhlA is unusual in that this protein is thought to be exported by the flagellar transport apparatus. In this study, we demonstrate that both extracellular phospholipase activity and flagellar function are dependent on the cysteine biosynthesis pathway. Furthermore, a disruption of cysteine biosynthesis results in decreased phlA and flagellar gene transcription, which can be restored by supplying bacteria with exogenous cysteine. These results identify a previously unrecognized role for CysE and cysteine in the secretion of S. marcescens phospholipase and in bacterial motility.


2015 ◽  
Vol 82 (4) ◽  
pp. 1249-1255 ◽  
Author(s):  
Lei Wang ◽  
Jana Hoffmann ◽  
Hildegard Watzlawick ◽  
Josef Altenbuchner

ABSTRACTWe developed a counterselectable deletion system forThermus thermophilusHB27 based on cytosine deaminase (encoded bycodA) fromThermaerobacter marianensisDSM 12885 and the sensitivity ofT. thermophilusHB27 to the antimetabolite 5-fluorocytosine (5-FC). The deletion vector comprises the pUC18 origin of replication, a thermostable kanamycin resistance marker functional inT. thermophilusHB27, andcodAunder the control of a constitutive putative trehalose promoter fromT. thermophilusHB27. The functionality of the system was demonstrated by deletion of thebglTgene, encoding a β-glycosidase, and three carotenoid biosynthesis genes,CYP175A1,crtY, andcrtI, from the genome ofT. thermophilusHB27.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Grace A. Blackwell ◽  
Ruth M. Hall

ABSTRACT The tet39 tetracycline resistance determinant and the macrolide resistance genes msrE and mphE were found in an 18.2-kb plasmid, pS30-1, recovered from a global clone 2 (GC2) Acinetobacter baumannii isolate from Singapore, that conferred resistance to tetracycline and erythromycin. pS30-1 also contains mobA and mobC genes encoding MOBQ family proteins, but attempts to mobilize pS30-1 utilizing a coresident conjugative repAci6 plasmid were unsuccessful. Eight pdif sites, consisting of inversely oriented binding sites for the XerC and XerD recombinases separated by 6 bp, were detected in pS30-1. The tet39 determinant and the msrE-mphE gene pair are each surrounded by two pdif sites in inverse orientation. Identical regions in different contexts and many previously unnoticed pdif sites were found in a number of different plasmids in GenBank, showing that the tet39 and msrE-mphE dif modules are mobile. A putative toxin/antitoxin system, a gene encoding a serine recombinase, and open reading frames of unknown function were also part of dif modules in pS30-1. In general, modules with internal XerC or XerD sites alternate. Two copies of ISAjo2-1 (94% identical to ISAjo2) in pS30-1 were inserted 5 bp from a XerC site, and this appears to be the preferred insertion site for this insertion sequence (IS) group. Apparently, Acinetobacter plasmids exploit the Acinetobacter XerC-XerD recombinases to mobilize DNA units containing resistance and other genes, via an uncharacterized mechanism. The tet39 and msrE-mphE dif modules add to the oxa24 module and the oxa58 module redefined here, bringing the total of resistance gene-containing dif modules in Acinetobacter plasmids to four.


2015 ◽  
Vol 81 (6) ◽  
pp. 2163-2172 ◽  
Author(s):  
V. Chow ◽  
D. Shantharaj ◽  
Y. Guo ◽  
G. Nong ◽  
G. V. Minsavage ◽  
...  

ABSTRACTXanthomonas citripv. citri strain 306 (Xcc306), a causative agent of citrus canker, produces endoxylanases that catalyze the depolymerization of cell wall-associated xylans. In the sequenced genomes of all plant-pathogenic xanthomonads, genes encoding xylanolytic enzymes are clustered in three adjacent operons. InXcc306, these consecutive operons contain genes encoding the glycoside hydrolase family 10 (GH10) endoxylanases Xyn10A and Xyn10C, theagu67gene, encoding a GH67 α-glucuronidase (Agu67), thexyn43Egene, encoding a putative GH43 α-l-arabinofuranosidase, and thexyn43Fgene, encoding a putative β-xylosidase. Recombinant Xyn10A and Xyn10C convert polymeric 4-O-methylglucuronoxylan (MeGXn) to oligoxylosides methylglucuronoxylotriose (MeGX3), xylotriose (X3), and xylobiose (X2).Xcc306 completely utilizes MeGXnpredigested with Xyn10A or Xyn10C but shows little utilization of MeGXn.Xcc306 with a deletion in the gene encoding α-glucuronidase (Xcc306 Δagu67) will not utilize MeGX3for growth, demonstrating the role of Agu67 in the complete utilization of GH10-digested MeGXn. Preferential growth on oligoxylosides compared to growth on polymeric MeGXnindicates that GH10 xylanases, either secreted byXcc306in plantaor produced by the plant host, generate oligoxylosides that are processed by Xyn10 xylanases and Agu67 residing in the periplasm. Coordinate induction by oligoxylosides ofxyn10,agu67,cirA, thetonBreceptor, and other genes within these three operons indicates that they constitute a regulon that is responsive to the oligoxylosides generated by the action ofXcc306 GH10 xylanases on MeGXn. The combined expression of genes in this regulon may allow scavenging of oligoxylosides derived from cell wall deconstruction, thereby contributing to the tissue colonization and/or survival ofXcc306 and, ultimately, to plant disease.


Sign in / Sign up

Export Citation Format

Share Document