scholarly journals Neutralizing Anti-Heat-Stable Toxin (STa) Antibodies Derived from Enterotoxigenic Escherichia coli Toxoid Fusions with STa Proteins Containing N12S, L9A/N12S, or N12S/A14T Mutations Show Little Cross-Reactivity with Guanylin or Uroguanylin

2017 ◽  
Vol 84 (2) ◽  
Author(s):  
Qiangde Duan ◽  
Jiachen Huang ◽  
Nan Xiao ◽  
Hyesuk Seo ◽  
Weiping Zhang

ABSTRACT Heat-stable toxin (STa)-producing enterotoxigenic Escherichia coli (ETEC) strains are a top cause of moderate-to-severe diarrhea in children from developing countries and a common cause of travelers' diarrhea. Recent progress in using STa toxoids and toxoid fusions to induce neutralizing anti-STa antibodies has accelerated ETEC vaccine development. However, concern remains regarding whether the derived anti-STa antibodies cross-react with STa-like guanylin and uroguanylin, two guanylate cyclase C (GC-C) ligands regulating fluid and electrolyte transportation in human intestinal and renal epithelial cells. To further divert STa from guanylin and uroguanylin structurally and antigenically and to eliminate anti-STa antibody cross-reactivity with guanylin and uroguanylin, we mutated STa at the 9th (leucine), 12th (asparagine), and 14th (alanine) residues for the double and triple mutants STaL9A/N12S, STaL9A/A14H, STaN12S/A14T, and STaL9A/N12S/A14H. We then fused each STa mutant (three copies) to a monomeric heat-labile toxin (LT) mutant (mnLTR192G/L211A) for the toxoid fusions 3×STaL9A/N12S-mnLTR192G/L211A, 3×STaL9A/A14H-mnLTR192G/L211A, 3×STaN12S/A14T-mnLTR192G/L211A, and 3×STaL9A/N12S/A14H-mnLTR192G/L211A; examined each fusion for anti-STa immunogenicity; and assessed the derived antibodies for in vitro neutralization activity against STa toxicity and for cross-reactivity with guanylin and uroguanylin. Mice subcutaneously immunized with each fusion protein developed anti-STa antibodies, and the antibodies derived from 3×STaN12S-mnLTR192G/L211A, 3×STaL9A/N12S-mnLTR192G/L211A, or 3×STaN12S/A14T-mnLTR192G/L211A prevented STa from the stimulation of intracellular cGMP in T-84 cells. Competitive enzyme-linked immunosorbent assays (ELISAs) showed that guanylin and uroguanylin hardly blocked the binding of anti-STa antibodies to the coated STa-ovalbumin conjugate. These results indicated that antibodies derived from 3×STaN12S-mnLTR192G/L211A, 3×STaL9A/N12S-mnLTR192G/L211A, or 3×STaN12S/A14T-mnLTR192G/L211A neutralized STa and had little cross-reactivity with guanylin and uroguanylin, suggesting that these toxoid fusions are suitable antigens for ETEC vaccines. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of children's diarrhea and travelers' diarrhea. Currently, there is no licensed vaccine against ETEC diarrhea. One key challenge is to identify safe antigens to induce antibodies neutralizing the key STa without cross-reacting with guanylin and uroguanylin, two important ligands controlling homeostasis in human intestinal and renal epithelial cells. In this study, we generated nontoxic fusion antigens that induced antibodies that neutralize STa enterotoxicity in vitro and do not cross-react with guanylin or uroguanylin. These fusions have become the preferred antigens for the development of ETEC vaccines to potentially prevent the deaths of hundreds of thousands of young children and hundreds of millions of diarrheal cases each year.

2019 ◽  
Vol 87 (7) ◽  
Author(s):  
Yuleima Diaz ◽  
Morten L. Govasli ◽  
Ephrem Debebe Zegeye ◽  
Halvor Sommerfelt ◽  
Hans Steinsland ◽  
...  

ABSTRACT Infection with enterotoxigenic Escherichia coli (ETEC) is a common cause of childhood diarrhea in low- and middle-income countries, as well as of diarrhea among travelers to these countries. In children, ETEC strains secreting the heat-stable toxin (ST) are the most pathogenic, and there are ongoing efforts to develop vaccines that target ST. One important challenge for ST vaccine development is to construct immunogens that do not elicit antibodies that cross-react with guanylin and uroguanylin, which are endogenous peptides involved in regulating the activity of the guanylate cyclase-C (GC-C) receptor. We immunized mice with both human ST (STh) and porcine ST (STp) chemically coupled to bovine serum albumin, and the resulting sera neutralized the toxic activities of both STh and STp. This suggests that a vaccine based on either ST variant can confer cross-protection. However, several anti-STh and anti-STp sera cross-reacted with the endogenous peptides, suggesting that the ST sequence must be altered to reduce the risk of unwanted cross-reactivity. Epitope mapping of four monoclonal anti-STh and six anti-STp antibodies, all of which neutralized both STh and STp, revealed that most epitopes appear to have at least one amino acid residue shared with guanylin or uroguanylin. Despite this, only one monoclonal antibody displayed demonstrable cross-reactivity to the endogenous peptides, suggesting that targeted mutations of a limited number of ST residues may be sufficient to obtain a safe ST-based vaccine.


2012 ◽  
Vol 19 (10) ◽  
pp. 1603-1608 ◽  
Author(s):  
Koushik Roy ◽  
David J. Hamilton ◽  
James M. Fleckenstein

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) is an important cause of diarrheal disease in developing countries, where it is responsible for hundreds of thousands of deaths each year. Vaccine development for ETEC has been hindered by the heterogeneity of known molecular targets and the lack of broad-based sustained protection afforded by existing vaccine strategies. In an effort to explore the potential role of novel antigens in ETEC vaccines, we examined the ability of antibodies directed against the ETEC heat-labile toxin (LT) and the recently described EtpA adhesin to prevent intestinal colonizationin vivoand toxin delivery to epithelial cellsin vitro. We demonstrate that EtpA is required for the optimal delivery of LT and that antibodies against this adhesin play at least an additive role in preventing delivery of LT to target intestinal cells when combined with antibodies against either the A or B subunits of the toxin. Moreover, vaccination with a combination of LT and EtpA significantly impaired intestinal colonization. Together, these results suggest that the incorporation of recently identified molecules such as EtpA could be used to enhance current approaches to ETEC vaccine development.


2010 ◽  
Vol 78 (5) ◽  
pp. 1824-1831 ◽  
Author(s):  
Arne Taxt ◽  
Rein Aasland ◽  
Halvor Sommerfelt ◽  
James Nataro ◽  
Pål Puntervoll

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) is responsible for 280 million to 400 million episodes of diarrhea and about 380,000 deaths annually. Epidemiological data suggest that ETEC strains which secrete heat-stable toxin (ST), alone or in combination with heat-labile toxin (LT), induce the most severe disease among children in developing countries. This makes ST an attractive target for inclusion in an ETEC vaccine. ST is released upon colonization of the small intestine and activates the guanylate cyclase C receptor, causing profuse diarrhea. To generate a successful toxoid, ST must be made immunogenic and nontoxic. Due to its small size, ST is nonimmunogenic in its natural form but becomes immunogenic when coupled to an appropriate large-molecular-weight carrier. This has been successfully achieved with several carriers, using either chemical conjugation or recombinant fusion techniques. Coupling of ST to a carrier may reduce toxicity, but further reduction by mutagenesis is desired to obtain a safe vaccine. More than 30 ST mutants with effects on toxicity have been reported. Some of these mutants, however, have lost the ability to elicit neutralizing immune responses to the native toxin. Due to the small size of ST, separating toxicity from antigenicity is a particular challenge that must be met. Another obstacle to vaccine development is possible cross-reactivity between anti-ST antibodies and the endogenous ligands guanylin and uroguanylin, caused by structural similarity to ST. Here we review the molecular and biological properties of ST and discuss strategies for developing an ETEC vaccine that incorporates immunogenic and nontoxic derivatives of the ST toxin.


2011 ◽  
Vol 18 (10) ◽  
pp. 1593-1599 ◽  
Author(s):  
Xiaosai Ruan ◽  
Mei Liu ◽  
Thomas A. Casey ◽  
Weiping Zhang

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) strains expressing K88 (F4) or F18 fimbriae and heat-labile (LT) and/or heat-stable (ST) toxins are the major cause of diarrhea in young pigs. Effective vaccines inducing antiadhesin (anti-K88 and anti-F18) and antitoxin (anti-LT and anti-ST) immunity would provide broad protection to young pigs against ETEC. In this study, we genetically fused nucleotides coding for peptides from K88ac major subunit FaeG, F18 minor subunit FedF, and LT toxoid (LT192) A2 and B subunits for a tripartite adhesin-adhesin-toxoid fusion (FaeG-FedF-LT192A2:B). This fusion was used for immunizations in mice and pigs to assess the induction of antiadhesin and antitoxin antibodies. In addition, protection by the elicited antiadhesin and antitoxin antibodies against a porcine ETEC strain was evaluated in a gnotobiotic piglet challenge model. The data showed that this FaeG-FedF-LT192A2:B fusion elicited anti-K88, anti-F18, and anti-LT antibodies in immunized mice and pigs. In addition, the anti-porcine antibodies elicited neutralized cholera toxin and inhibited adherence against both K88 and F18 fimbriae. Moreover, immunized piglets were protected when challenged with ETEC strain 30302 (K88ac/LT/STb) and did not develop clinical disease. In contrast, all control nonvaccinated piglets developed severe diarrhea and dehydration after being challenged with the same ETEC strain. This study clearly demonstrated that this FaeG-FedF-LT192A2:B fusion antigen elicited antibodies that neutralized LT toxin and inhibited the adherence of K88 and F18 fimbrialE. colistrains and that this fusion could serve as an antigen for vaccines against porcine ETEC diarrhea. In addition, the adhesin-toxoid fusion approach used in this study may provide important information for developing effective vaccines against human ETEC diarrhea.


2016 ◽  
Vol 23 (7) ◽  
pp. 628-637 ◽  
Author(s):  
Qingwei Luo ◽  
Tim J. Vickers ◽  
James M. Fleckenstein

EnterotoxigenicEscherichia coli(ETEC) strains are a common cause of diarrhea. Extraordinary antigenic diversity has prompted a search for conserved antigens to complement canonical approaches to ETEC vaccine development. EtpA, an immunogenic extracellular ETEC adhesin relatively conserved in the ETEC pathovar, has previously been shown to be a protective antigen following intranasal immunization. These studies were undertaken to explore alternative routes of EtpA vaccination that would permit use of a double mutant (R192G L211A) heat-labile toxin (dmLT) adjuvant. Here, oral vaccination with EtpA adjuvanted with dmLT afforded significant protection against small intestinal colonization, and the degree of protection correlated with fecal IgG, IgA, or total fecal antibody responses to EtpA. Sublingual vaccination yielded compartmentalized mucosal immune responses with significant increases in anti-EtpA fecal IgG and IgA, and mice vaccinated via this route were also protected against colonization. In contrast, while intradermal (i.d.) vaccination achieved high levels of both serum and fecal antibodies against both EtpA and dmLT, mice vaccinated via the i.d. route were not protected against subsequent colonization and the avidity of serum IgG and IgA EtpA-specific antibodies was significantly lower after i.d. immunization compared to other routes. Finally, we demonstrate that antiserum from vaccinated mice significantly impairs binding of LT to cognate GM1 receptors and shows near complete neutralization of toxin delivery by ETECin vitro. Collectively, these data provide further evidence that EtpA could complement future vaccine strategies but also suggest that additional effort will be required to optimize its use as a protective immunogen.


2014 ◽  
Vol 82 (7) ◽  
pp. 2913-2922 ◽  
Author(s):  
Arne M. Taxt ◽  
Yuleima Diaz ◽  
Amélie Bacle ◽  
Cédric Grauffel ◽  
Nathalie Reuter ◽  
...  

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) expressing the heat-stable toxin (ST) (human-type [STh] and porcine-type [STp] variants) is among the five most important enteric pathogens in young children living in low- and middle-income countries. ST mediates diarrheal disease through activation of the guanylate cyclase C (GC-C) receptor and is an attractive vaccine target with the potential to confer protection against a wide range of ETEC strains. However, immunological cross-reactivity to the endogenous GC-C ligands guanylin and uroguanylin is a major concern because of the similarities to ST in amino acid sequence, structure, and function. We have investigated the presence of similar epitopes on STh, STp, guanylin, and uroguanylin by analyzing these peptides in eight distinct competitive enzyme-linked immunosorbent assays (ELISAs). A fraction (27%) of a polyclonal anti-STh antibody and an anti-STh monoclonal antibody (MAb) cross-reacted with uroguanylin, the latter with a 73-fold-lower affinity. In contrast, none of the antibodies raised against STp, one polyclonal antibody and three MAbs, cross-reacted with the endogenous peptides. Antibodies raised against guanylin and uroguanylin showed partial cross-reactivity with the ST peptides. Our results demonstrate, for the first time, that immunological cross-reactions between ST and the endogenous peptides can occur. However, the partial nature and low affinity of the observed cross-reactions suggest that the risk of adverse effects from a future ST vaccine may be low. Furthermore, our results suggest that this risk may be reduced or eliminated by basing an ST immunogen on STp or a selectively mutated variant of STh.


2016 ◽  
Vol 84 (10) ◽  
pp. 2748-2757 ◽  
Author(s):  
Xi Lu ◽  
Enqing Fu ◽  
Yonghong Xie ◽  
Faguang Jin

Heat-labile enterotoxin (LT), the major virulence factor of enterotoxigenicEscherichia coli(ETEC), can lead to severe diarrhea and promotes ETEC adherence to intestinal epithelial cells. Most previousin vitrostudies focused on ETEC pathogenesis were conducted under aerobic conditions, which do not reflect the real situation of ETEC infection because the intestine is anoxic. In this study, the expression and secretion of LT under anaerobic or microaerobic conditions were determined; LT was not efficiently secreted into the supernatant under anaerobic or microaerobic conditions unless terminal electron acceptors (trimethylamineN-oxide dihydrate [TMAO] or nitrate) were available. Furthermore, we found that the restoration effects of TMAO and nitrate on LT secretion could be inhibited by amytal or ΔtorCADand ΔnarGE. colistrains, indicating that LT secretion under anaerobic conditions was dependent on the integrity of the respiratory chain. At the same time, electron acceptors increase the ATP level of ETEC, but this increase was not the main reason for LT secretion. Subsequently, the relationship between the integrity of the respiratory chain and the function of the type II secretion system was determined. The GspD protein, the secretin of ETEC, was assembled under anaerobic conditions and was accompanied by LT secretion when TMAO or nitrate was added. Our data also demonstrated that TMAO and nitrate could not induce the GspD assembly and LT secretion in ΔtorCADand ΔnarGstrains, respectively. Moreover, GspD assembly under anaerobic conditions was assisted by the pilot protein YghG.


2011 ◽  
Vol 79 (11) ◽  
pp. 4716-4729 ◽  
Author(s):  
Amin Tahoun ◽  
Gabriella Siszler ◽  
Kevin Spears ◽  
Sean McAteer ◽  
Jai Tree ◽  
...  

ABSTRACTThe EspF protein is secreted by the type III secretion system of enteropathogenic and enterohemorrhagicEscherichia coli(EPEC and EHEC, respectively). EspF sequences differ between EHEC O157:H7, EHEC O26:H11, and EPEC O127:H6 in terms of the number of SH3-binding polyproline-rich repeats and specific residues in these regions, as well as residues in the amino domain involved in cellular localization. EspFO127is important for the inhibition of phagocytosis by EPEC and also limits EPEC translocation through antigen-sampling cells (M cells). EspFO127has been shown to have effects on cellular organelle function and interacts with several host proteins, including N-WASP and sorting nexin 9 (SNX9). In this study, we compared the capacities of differentespFalleles to inhibit (i) bacterial phagocytosis by macrophages, (ii) translocation through an M-cell coculture system, and (iii) uptake by and translocation through cultured bovine epithelial cells. TheespFgene fromE. coliserotype O157 (espFO157) allele was significantly less effective at inhibiting phagocytosis and also had reduced capacity to inhibitE. colitranslocation through a human-derivedin vitroM-cell coculture system in comparison toespFO127andespFO26. In contrast,espFO157was the most effective allele at restricting bacterial uptake into and translocation through primary epithelial cells cultured from the bovine terminal rectum, the predominant colonization site of EHEC O157 in cattle and a site containing M-like cells. Although LUMIER binding assays demonstrated differences in the interactions of the EspF variants with SNX9 and N-WASP, we propose that other, as-yet-uncharacterized interactions contribute to the host-based variation in EspF activity demonstrated here.


2012 ◽  
Vol 80 (12) ◽  
pp. 4417-4425 ◽  
Author(s):  
Xiaogang Wang ◽  
Philip R. Hardwidge

ABSTRACTThe NF-κB pathway regulates innate immune responses to infection. NF-κB is activated after pathogen-associated molecular patterns are detected, leading to the induction of proinflammatory host responses. As a countermeasure, bacterial pathogens have evolved mechanisms to subvert NF-κB signaling. EnterotoxigenicEscherichia coli(ETEC) causes diarrheal disease and significant morbidity and mortality for humans in developing nations. The extent to which this important pathogen subverts innate immune responses by directly targeting the NF-κB pathway is an understudied topic. Here we report that ETEC secretes a heat-stable, proteinaceous factor that blocks NF-κB signaling normally induced by tumor necrosis factor (TNF), interleukin-1β, and flagellin. Pretreating intestinal epithelial cells with ETEC supernatant significantly blocked the degradation of the NF-κB inhibitor IκBα without affecting IκBα phosphorylation. Data from immunoprecipitation experiments suggest that the ETEC factor functions by preventing IκBα polyubiquitination. Inhibiting clathrin function blocked the activity of the secreted ETEC factor, suggesting that this yet-uncharacterized activity may utilize clathrin-dependent endocytosis to enter host cells. These data suggest that ETEC evades the host innate immune response by directly modulating NF-κB signaling.


Sign in / Sign up

Export Citation Format

Share Document