scholarly journals Surveillance of Listeria monocytogenes : Early detection, population dynamics and quasimetagenomic sequencing during selective enrichment

Author(s):  
Eva Wagner ◽  
Annette Fagerlund ◽  
Solveig Langsrud ◽  
Trond Møretrø ◽  
Merete Rusås Jensen ◽  
...  

In this study we addressed different aspects regarding the implementation of quasimetagenomic sequencing as a hybrid surveillance method in combination with enrichment for early detection of Listeria monocytogenes in the food industry. Different experimental enrichment cultures were used, comprising seven L. monocytogenes strains of different sequence types (STs), with and without a background microbiota community. To assess whether the proportions of the different STs changed over time during enrichment, the growth and population dynamics were assessed using dapE colony sequencing and dapE and 16S rRNA amplicon sequencing. There was a tendency of some STs to have a higher relative abundance during the late stage of enrichment when L. monocytogenes was enriched without background microbiota. When co-enriched with background microbiota, the population dynamics of the different STs was more consistent over time. To evaluate the earliest possible timepoint during enrichment that allows the detection of L. monocytogenes and at the same time the generation of genetic information that enables an estimation regarding the strain diversity in a sample, quasimetagenomic sequencing was performed early during enrichment in the presence of the background microbiota using Oxford Nanopore Technologies Flongle and Illumina MiSeq sequencing. The application of multiple displacement amplification (MDA) enabled detection of L. monocytogenes (and the background microbiota) after only 4 h of enrichment using both applied sequencing approaches. The MiSeq sequencing data additionally enabled the prediction of co-occurring L. monocytogenes strains in the samples. Importance We showed that a combination of a short primary enrichment combined with MDA and Nanopore sequencing can accelerate the traditional process of cultivation and identification of L. monocytogenes . The use of Illumina MiSeq sequencing additionally allowed us to predict the presence of co-occurring L. monocytogenes strains. Our results suggest quasimetagenomic sequencing to be a valuable and promising hybrid surveillance tool for the food industry that enables faster identification of L. monocytogenes during early enrichment. Routine application of this approach could lead to more efficient and proactive actions in the food industry that prevent contamination and subsequent product recalls and food destruction, economic and reputational losses and human listeriosis cases.

Parasitology ◽  
2018 ◽  
Vol 146 (4) ◽  
pp. 533-542 ◽  
Author(s):  
O. Benedicenti ◽  
C. J. Secombes ◽  
C. Collins

AbstractPopulation growth,in vitro, of threeParamoeba peruranscultures, one polyclonal (G) and two clonal (B8, CE6, derived from G), previously shown to differ in virulence (B8 > G > CE6), was compared at 10 and 15 °C. B8 showed a significantly higher increase in attached and in suspended amoebae over time at 15 and 10 °C, respectively. CE6 and G also had significantly higher numbers of suspended amoebae at 10 °C compared with 15 °C at experiment termination. However, in contrast to B8, numbers of attached amoebae were significantly higher at 10 °C in CE6 but showed a similar trend in G at the end of the experiment. Numbers of both suspended and attached amoebae were lower in B8 compared with CE6 and G. Significant differences in bacterial community composition and/or relative abundances were found, between cultures, between temperatures and between the same culture with and without amoebae, based on 16S rRNA Illumina MiSeq sequencing. Bacterial diversity was lower in B8 and CE6 compared with G, possibly reflecting selection during clonal isolation. The results indicate that polyclonalP. peruranspopulations may contain amoebae displaying different growth dynamics. Further studies are required to determine if these differences are linked to differences seen in the bacterial communities.


2021 ◽  
Vol 13 (13) ◽  
pp. 7358
Author(s):  
Dong-Hyun Kim ◽  
Hyun-Sik Yun ◽  
Young-Saeng Kim ◽  
Jong-Guk Kim

This study analyzed the microbial community metagenomically to determine the cause of the functionality of a livestock wastewater treatment facility that can effectively remove pollutants, such as ammonia and hydrogen sulfide. Illumina MiSeq sequencing was used in analyzing the composition and structure of the microbial community, and the 16S rRNA gene was used. Through Illumina MiSeq sequencing, information such as diversity indicators as well as the composition and structure of microbial communities present in the livestock wastewater treatment facility were obtained, and differences between microbial communities present in the investigated samples were compared. The number of reads, operational taxonomic units, and species richness were lower in influent sample (NLF), where the wastewater enters, than in effluent sample (NL), in which treated wastewater is found. This difference was greater in June 2019 than in January 2020, and the removal rates of ammonia (86.93%) and hydrogen sulfide (99.72%) were also higher in June 2019. In both areas, the community composition was similar in January 2020, whereas the influent sample (NLF) and effluent sample (NL) areas in June 2019 were dominated by Proteobacteria (76.23%) and Firmicutes (67.13%), respectively. Oleiphilaceae (40.89%) and Thioalkalibacteraceae (12.91%), which are related to ammonia and hydrogen sulfide removal, respectively, were identified in influent sample (NLF) in June 2019. They were more abundant in June 2019 than in January 2020. Therefore, the functionality of the livestock wastewater treatment facility was affected by characteristics, including the composition of the microbial community. Compared to Illumina MiSeq sequencing, fewer species were isolated and identified in both areas using culture-based methods, suggesting Illumina MiSeq sequencing as a powerful tool to determine the relevance of microbial communities for pollutant removal.


2016 ◽  
Vol 66 (3) ◽  
pp. 1293-1301 ◽  
Author(s):  
Weining Sun ◽  
Huazhi Xiao ◽  
Qian Peng ◽  
Qiaoge Zhang ◽  
Xingxing Li ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lulu Chen ◽  
Qiong Zhang ◽  
Yan Wang ◽  
Keke Zhang ◽  
Jing Zou

Abstract Background Extrinsic black stain (EBS) is characterized by discrete dark dots or lines on the tooth surface. The relationship between EBS and oral microbiota in children remains elusive. The aim of this study was to compare dental plaque microbiome in EBS children with that in EBS-free children in the primary dentition. Methods The Illumina MiSeq sequencing technique was utilized in the cross-sectional pilot study to investigate the diversity and composition of the supragingival plaque microbiota from 10 EBS-positive and 10 EBS-free children. The results were analysed with nonparametric Mann-Whitney U test, Pearson Chi-Square test, Fisher’s Exact test and one-way ANOVA tests. Results We identified 13 different phyla, 22 classes, 33 orders, 54 families, 105 genera, and 227 species from a total of 52,646 high-quality sequences. Between two groups, no statistical differences were observed in the estimators of community richness and diversity at 97% similarity, as well as in the Unweighted Unifrac principal co-ordinates analysis (PCoA). At the species level, higher level of relative abundance of Actinomyces naeslundii and lower level of relative abundance of a species belonging to Candidate_division_TM7 was observed in dental plaque of EBS-positive subjects, compared to dental plaque of EBS-free subjects (P < 0.05). This indicated that some species might be involved in the EBS process. Conclusion Changes in dental plaque microbiota is possibly relevant to the process of EBS in the primary dentition.


2018 ◽  
Vol 34 ◽  
pp. 25-36 ◽  
Author(s):  
Michelle A. Peck ◽  
Kimberly Sturk-Andreaggi ◽  
Jacqueline T. Thomas ◽  
Robert S. Oliver ◽  
Suzanne Barritt-Ross ◽  
...  

2019 ◽  
Vol 20 (9) ◽  
pp. 2125 ◽  
Author(s):  
Muhammad Imran Ghani ◽  
Ahmad Ali ◽  
Muhammad Jawaad Atif ◽  
Muhammad Ali ◽  
Bakht Amin ◽  
...  

The incorporation of plant residues into soil can be considered a keystone sustainability factor in improving soil structure function. However, the effects of plant residue addition on the soil microbial communities involved in biochemical cycles and abiotic stress phenomena are poorly understood. In this study, experiments were conducted to evaluate the role of raw garlic stalk (RGS) amendment in avoiding monoculture-related production constraints by studying the changes in soil chemical properties and microbial community structures. RGS was applied in four different doses, namely the control (RGS0), 1% (RGS1), 3% (RGS2), and 5% (RGS3) per 100 g of soil. The RGS amendment significantly increased soil electrical conductivity (EC), N, P, K, and enzyme activity. The soil pH significantly decreased with RGS application. High-throughput Illumina MiSeq sequencing revealed significant alterations in bacterial community structures in response to RGS application. Among the 23 major taxa detected, Anaerolineaceae, Acidobacteria, and Cyanobacteria exhibited an increased abundance level. RGS2 increased some bacteria reported to be beneficial including Acidobacteria, Bacillus, and Planctomyces (by 42%, 64%, and 1% respectively). Furthermore, internal transcribed spacer (ITS) fungal regions revealed significant diversity among the different treatments, with taxa such as Chaetomium (56.2%), Acremonium (4.3%), Fusarium (4%), Aspergillus (3.4%), Sordariomycetes (3%), and Plectosphaerellaceae (2%) showing much abundance. Interestingly, Coprinellus (14%) was observed only in RGS-amended soil. RGS treatments effectively altered soil fungal community structures and reduced certain known pathogenic fungal genera, i.e., Fusarium and Acremonium. The results of the present study suggest that RGS amendment potentially affects the microbial community structures that probably affect the physiological and morphological attributes of eggplant under a plastic greenhouse vegetable cultivation system (PGVC) in monoculture.


2020 ◽  
Vol 202 (4) ◽  
pp. 859-873 ◽  
Author(s):  
Zhao-Jin Chen ◽  
Ge Xu ◽  
Chuan-Yu Ding ◽  
Bao-Hai Zheng ◽  
Yan Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document