scholarly journals Variation in Consumption of Human Milk Oligosaccharides by Infant Gut-Associated Strains of Bifidobacterium breve

2013 ◽  
Vol 79 (19) ◽  
pp. 6040-6049 ◽  
Author(s):  
Santiago Ruiz-Moyano ◽  
Sarah M. Totten ◽  
Daniel A. Garrido ◽  
Jennifer T. Smilowitz ◽  
J. Bruce German ◽  
...  

ABSTRACTHuman milk contains a high concentration of complex oligosaccharides that influence the composition of the intestinal microbiota in breast-fed infants. Previous studies have indicated that select species such asBifidobacterium longumsubsp.infantisandBifidobacterium bifidumcan utilize human milk oligosaccharides (HMO)in vitroas the sole carbon source, while the relatively fewB. longumsubsp.longumandBifidobacterium breveisolates tested appear less adapted to these substrates. Considering the high frequency at whichB. breveis isolated from breast-fed infant feces, we postulated that someB. brevestrains can more vigorously consume HMO and thus are enriched in the breast-fed infant gastrointestinal tract. To examine this, a number ofB. breveisolates from breast-fed infant feces were characterized for the presence of different glycosyl hydrolases that participate in HMO utilization, as well as by their ability to grow on HMO or specific HMO species such as lacto-N-tetraose (LNT) and fucosyllactose. AllB. brevestrains showed high levels of growth on LNT and lacto-N-neotetraose (LNnT), and, in general, growth on total HMO was moderate for most of the strains, with several strain differences. Growth and consumption of fucosylated HMO were strain dependent, mostly in isolates possessing a glycosyl hydrolase family 29 α-fucosidase. Glycoprofiling of the spent supernatant after HMO fermentation by select strains revealed that allB. brevestrains can utilize sialylated HMO to a certain extent, especially sialyl-lacto-N-tetraose. Interestingly, this specific oligosaccharide was depleted before neutral LNT by strain SC95. In aggregate, this work indicates that the HMO consumption phenotype inB. breveis variable; however, some strains display specific adaptations to these substrates, enabling more vigorous consumption of fucosylated and sialylated HMO. These results provide a rationale for the predominance of this species in breast-fed infant feces and contribute to a more accurate picture of the ecology of the developing infant intestinal microbiota.

2016 ◽  
Vol 82 (12) ◽  
pp. 3622-3630 ◽  
Author(s):  
Sercan Karav ◽  
Annabelle Le Parc ◽  
Juliana Maria Leite Nobrega de Moura Bell ◽  
Steven A. Frese ◽  
Nina Kirmiz ◽  
...  

ABSTRACTMilk, in addition to nourishing the neonate, provides a range of complex glycans whose construction ensures a specific enrichment of key members of the gut microbiota in the nursing infant, a consortium known as the milk-oriented microbiome. Milk glycoproteins are thought to function similarly, as specific growth substrates for bifidobacteria common to the breast-fed infant gut. Recently, a cell wall-associated endo-β-N-acetylglucosaminidase (EndoBI-1) found in various infant-borne bifidobacteria was shown to remove a range of intactN-linked glycans. We hypothesized that these released oligosaccharide structures can serve as a sole source for the selective growth of bifidobacteria. We demonstrated that EndoBI-1 releasedN-glycans from concentrated bovine colostrum at the pilot scale. EndoBI-1-releasedN-glycans supported the rapid growth ofBifidobacterium longumsubsp.infantis(B. infantis), a species that grows well on human milk oligosaccharides, but did not support growth ofBifidobacterium animalissubsp.lactis(B. lactis), a species which does not. Conversely,B. infantisATCC 15697 did not grow on the deglycosylated milk protein fraction, clearly demonstrating that the glycan portion of milk glycoproteins provided the key substrate for growth. Mass spectrometry-based profiling revealed thatB. infantisconsumed 73% of neutral and 92% of sialylatedN-glycans, whileB. lactisdegraded only 11% of neutral and virtually no (<1%) sialylatedN-glycans. These results provide mechanistic support thatN-linked glycoproteins from milk serve as selective substrates for the enrichment of infant-associated bifidobacteria capable of carrying out the initial deglycosylation. Moreover, releasedN-glycans were better growth substrates than the intact milk glycoproteins, suggesting that EndoBI-1 cleavage is a key initial step in consumption of glycoproteins. Finally, the variety ofN-glycans released from bovine milk glycoproteins suggests that they may serve as novel prebiotic substrates with selective properties similar to those of human milk oligosaccharides.IMPORTANCEIt has been previously shown that glycoproteins serve as growth substrates for bifidobacteria. However, which part of a glycoprotein (glycans or polypeptides) is responsible for this function was not known. In this study, we used a novel enzyme to cleave conjugatedN-glycans from milk glycoproteins and tested their consumption by various bifidobacteria. The results showed that the glycans selectively stimulated the growth ofB. infantis, which is a key infant gut microbe. The selectivity of consumption of individualN-glycans was determined using advanced mass spectrometry (nano-liquid chromatography chip–quadrupole time of flight mass spectrometry [nano-LC-Chip-Q-TOF MS]) to reveal thatB. infantiscan consume the range of glycan structures released from whey protein concentrate.


2018 ◽  
Vol 84 (16) ◽  
Author(s):  
Gabriele Andrea Lugli ◽  
Walter Mancino ◽  
Christian Milani ◽  
Sabrina Duranti ◽  
Francesca Turroni ◽  
...  

ABSTRACT The repertoire of secreted proteins decoded by a microorganism represents proteins released from or associated with the cell surface. In gut commensals, such as bifidobacteria, these proteins are perceived to be functionally relevant, as they regulate the interaction with the gut environment. In the current study, we screened the predicted proteome of over 300 bifidobacterial strains among the currently recognized bifidobacterial species to generate a comprehensive database encompassing bifidobacterial extracellular proteins. A glycobiome analysis of this predicted bifidobacterial secretome revealed that a correlation exists between particular bifidobacterial species and their capability to hydrolyze human milk oligosaccharides (HMOs) and intestinal glycoconjugates, such as mucin. Furthermore, an exploration of metatranscriptomic data sets of the infant gut microbiota allowed the evaluation of the expression of bifidobacterial genes encoding extracellular proteins, represented by ABC transporter substrate-binding proteins and glycoside hydrolases enzymes involved in the degradation of human milk oligosaccharides and mucin. Overall, this study provides insights into how bifidobacteria interact with their natural yet highly complex environment, the infant gut.IMPORTANCE The ecological success of bifidobacteria relies on the activity of extracellular proteins that are involved in the metabolism of nutrients and the interaction with the environment. To date, information on secreted proteins encoded by bifidobacteria is incomplete and just related to few species. In this study, we reconstructed the bifidobacterial pan-secretome, revealing extracellular proteins that modulate the interaction of bifidobacteria with their natural environment. Furthermore, a survey of the secretion systems between bifidobacterial genomes allowed the identification of a conserved Sec-dependent secretion machinery in all the analyzed genomes and the Tat protein translocation system in the chromosomes of 23 strains belonging to Bifidobacterium longum subsp. longum and Bifidobacterium aesculapii.


2011 ◽  
Vol 78 (3) ◽  
pp. 795-803 ◽  
Author(s):  
David A. Sela ◽  
Daniel Garrido ◽  
Larry Lerno ◽  
Shuai Wu ◽  
Kemin Tan ◽  
...  

ABSTRACTBifidobacterium longumsubsp.infantisATCC 15697 utilizes several small-mass neutral human milk oligosaccharides (HMOs), several of which are fucosylated. Whereas previous studies focused on endpoint consumption, a temporal glycan consumption profile revealed a time-dependent effect. Specifically, among preferred HMOs, tetraose was favored early in fermentation, with other oligosaccharides consumed slightly later. In order to utilize fucosylated oligosaccharides, ATCC 15697 possesses several fucosidases, implicating GH29 and GH95 α-l-fucosidases in a gene cluster dedicated to HMO metabolism. Evaluation of the biochemical kinetics demonstrated that ATCC 15697 expresses three fucosidases with a high turnover rate. Moreover, several ATCC 15697 fucosidases are active on the linkages inherent to the HMO molecule. Finally, the HMO cluster GH29 α-l-fucosidase possesses a crystal structure that is similar to previously characterized fucosidases.


2014 ◽  
Vol 14 (1) ◽  
pp. 491-502 ◽  
Author(s):  
Maria Lorna A. De Leoz ◽  
Karen M. Kalanetra ◽  
Nicholas A. Bokulich ◽  
John S. Strum ◽  
Mark A. Underwood ◽  
...  

mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Yaqiang Bai ◽  
Jia Tao ◽  
Jiaorui Zhou ◽  
Qingjie Fan ◽  
Man Liu ◽  
...  

ABSTRACT The milk glycobiome has a significant impact on the gut microbiota of infants, which plays a pivotal role in health and development. Fucosylated human milk oligosaccharides (HMOs) and N-glycans on milk proteins are beneficial for the development of healthy gut microbiota, and the fucosylation levels of these glycans can be affected by the maternal fucosyltransferase 2 gene (FUT2). Here, we present results of longitudinal research on paired milk and stool samples from 56 Chinese mothers (CMs) and their breast-fed children. Changes of HMOs and fucosylated N-glycans in milk of CMs at different lactation stages were detected, which allowed characterization of the major differences in milk glycans and consequential effects on the gut microbiome of infants according to maternal FUT2 status. Significant differences in the abundance of total and fucosylated HMOs between secretor and nonsecretor CMs were noted, especially during early lactation. Despite a tendency toward decreasing milk protein concentrations, the fucosylation levels of milk N-glycans increased during late lactation. The changes in the levels of fucosylated HMOs and milk N-glycans were highly correlated with the growth of Bifidobacterium spp. and Lactobacillus spp. in the gut of infants during early and later lactation, respectively. Enriched expression of genes encoding glycoside hydrolases, glycosyl transferases, ATP-binding cassette (ABC) transporters, and permeases in infants fed by secretor CMs contributed to the promotion of these bacteria in infants. Our data highlight the important role of fucosylated milk glycans in shaping the gut microbiome of infants and provide a solid foundation for development of “personalized” nutrition for Chinese infants. IMPORTANCE Human milk glycans provide a broad range of carbon sources for gut microbes in infants. Levels of protein glycosylation in human milk vary during lactation and may also be affected by the stages of gestation and lactation and by the secretor status of the mother. This was the first study to evaluate systematically dynamic changes in human milk oligosaccharides and fucosylated N-glycans in the milk of Chinese mothers with different secretor statuses during 6 months of lactation. Given the unique single nucleotide polymorphism site (rs1047781, A385T) on the fucosyltransferase 2 gene among Chinese populations, our report provides a specific insight into the milk glycobiome of Chinese mothers, which may exert effects on the gut microbiota of infants that differ from findings from other study cohorts.


The Analyst ◽  
2018 ◽  
Vol 143 (2) ◽  
pp. 536-548 ◽  
Author(s):  
Amr El-Hawiet ◽  
Yajie Chen ◽  
Km Shams-Ud-Doha ◽  
Elena N. Kitova ◽  
Pavel I. Kitov ◽  
...  

Human milk oligosaccharides (HMOs) afford many health benefits to breast-fed infants, such as protection against infection and regulation of the immune system, through the formation of non-covalent interactions with protein receptors.


Glycobiology ◽  
2011 ◽  
Vol 22 (3) ◽  
pp. 361-368 ◽  
Author(s):  
Erina Yoshida ◽  
Haruko Sakurama ◽  
Masashi Kiyohara ◽  
Masahiro Nakajima ◽  
Motomitsu Kitaoka ◽  
...  

BMB Reports ◽  
2012 ◽  
Vol 45 (8) ◽  
pp. 433-441 ◽  
Author(s):  
Kyung-Hun Jeong ◽  
Vi Nguyen ◽  
Jae-Han Kim

2018 ◽  
Vol 84 (9) ◽  
pp. e02774-17 ◽  
Author(s):  
Kieran James ◽  
Mary O'Connell Motherway ◽  
Christophe Penno ◽  
Rebecca Louise O'Brien ◽  
Douwe van Sinderen

ABSTRACTBifidobacterial carbohydrate metabolism has been studied in considerable detail for a variety of both plant- and human-derived glycans, particularly involving the bifidobacterial prototype strainBifidobacterium breveUCC2003. We recently elucidated the metabolic pathways by which thehumanmilkoligosaccharide (HMO) constituents lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT) and lacto-N-biose (LNB) are utilized byB. breveUCC2003. However, to date, no work has been carried out on the regulatory mechanisms that control the expression of the genetic loci involved in these HMO metabolic pathways. In this study, we describe the characterization of three transcriptional regulators and the corresponding operator and associated (inducible) promoter sequences, with the latter governing the transcription of the genetic elements involved in LN(n)T/LNB metabolism. The activity of these regulators is dependent on the release of specific monosaccharides, which are believed to act as allosteric effectors and which are derived from the corresponding HMOs targeted by the particular locus.IMPORTANCEHuman milk oligosaccharides (HMOs) are a key factor in the development of the breastfed-infant microbiota. They function as prebiotics, selecting for a specific range of microbes, including a number of infant-associated species of bifidobacteria, which are thought to provide a range of health benefits to the infant host. While much research has been carried out on elucidating the mechanisms of HMO metabolism in infant-associated bifidobacteria, to date there is very little understanding of the transcriptional regulation of these pathways. This study reveals a multicomponent transcriptional regulation system that controls the recently identified pathways of HMO metabolism in the infant-associatedBifidobacterium breveprototype strain UCC2003. This not only provides insight into the regulatory mechanisms present in other infant-associated bifidobacteria but also provides an example of a network of sequential steps regulating microbial carbohydrate metabolism.


Sign in / Sign up

Export Citation Format

Share Document