Shuttle Vector-Based Transformation System for Pyrococcus furiosus
ABSTRACT Pyrococcus furiosus is a model organism for analyses of molecular biology and biochemistry of archaea, but so far no useful genetic tools for this species have been described. We report here a genetic transformation system for P. furiosus based on the shuttle vector system pYS2 from Pyrococcus abyssi. In the redesigned vector, the pyrE gene from Sulfolobus was replaced as a selectable marker by the 3-hydroxy-3-methylglutaryl coenzyme A reductase gene (HMG-CoA) conferring resistance of transformants to the antibiotic simvastatin. Use of this modified plasmid resulted in the overexpression of the HMG-CoA reductase in P. furiosus, allowing the selection of strains by growth in the presence of simvastatin. The modified shuttle vector replicated in P. furio s us, but the copy number was only one to two per chromosome. This system was used for overexpression of His6-tagged subunit D of the RNA polymerase (RNAP) in Pyrococcus cells. Functional RNAP was purified from transformed cells in two steps by Ni-NTA and gel filtration chromatography. Our data provide evidence that expression of transformed genes can be controlled from a regulated gluconeogenetic promoter.