protoplast regeneration
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 18)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 3 ◽  
Author(s):  
Sjur Sandgrind ◽  
Xueyuan Li ◽  
Emelie Ivarson ◽  
Annelie Ahlman ◽  
Li-Hua Zhu

Field cress (Lepidium campestre) is a potential oilseed crop that has been under domestication in recent decades. CRISPR/Cas9 is a powerful tool for rapid trait improvement and gene characterization and for generating transgene-free mutants using protoplast transfection system. However, protoplast regeneration remains challenging for many plant species. Here we report an efficient protoplast regeneration and transfection protocol for field cress. Important factors such as type of basal media, type/combination of plant growth regulators, and culture duration on different media were optimized. Among the basal media tested, Nitsch was the best for protoplast growth in MI and MII media. For cell wall formation during the early stage of protoplast growth, relatively high auxin concentrations (0.5 mg L−1 NAA and 2,4-D), without addition of cytokinin was preferred for maintaining protoplast viability. After cell wall formation, 1.1 mg L−1 TDZ combined with either 0.05 mg L−1 NAA or 2,4-D was found to efficiently promote protoplast growth. On solid shoot induction medium, 1.1 mg L−1 TDZ without any auxin resulted in over 80% shoot generation frequency. A longer culture duration in MI medium would inhibit protoplast growth, while a longer culture duration in MII medium significantly delayed shoot formation. Using this optimized protoplast regeneration protocol, we have established an efficient PEG-mediated transfection protocol using a vector harboring the GFP gene, with transfection efficiencies of 50–80%. This efficient protoplast protocol would facilitate further genetic improvement of field cress via genome editing, and be beneficial to development of protoplast regeneration protocols for related plant species.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2254
Author(s):  
Meiling Zhang ◽  
Zhenrui He ◽  
Xiaotong Huang ◽  
Canwei Shu ◽  
Erxun Zhou

Here, we describe a novel double-stranded (ds) RNA mycovirus designated Rhizoctonia solani dsRNA virus 5 (RsRV5) from strain D122 of Rhizoctonia solani AG-1 IA, the causal agent of rice sheath blight. The RsRV5 genome consists of two segments of dsRNA (dsRNA-1, 1894 bp and dsRNA-2, 1755 bp), each possessing a single open reading frame (ORF). Sequence alignments and phylogenetic analyses showed that RsRV5 is a new member of the genus Gammapartitivirus in the family Partitiviridae. Transmission electron microscope (TEM) images revealed that RsRV5 has isometric viral particles with a diameter of approximately 20 nm. The mycovirus RsRV5 was successfully removed from strain D122 by using the protoplast regeneration technique, thus resulting in derivative isogenic RsRV5-cured strain D122-P being obtained. RsRV5-cured strain D122-P possessed the traits of accelerated mycelial growth rate, increased sclerotia production and enhanced pathogenicity to rice leaves compared with wild type RsRV5-infection strain D122. Transcriptome analysis showed that three genes were differentially expressed between two isogenic strains, D122 and D122-P. These findings provided new insights into the molecular mechanism of the interaction between RsRV5 and its host, D122 of R. solani AG-1 IA.


2021 ◽  
Author(s):  
Chen-Tran Hsu ◽  
Yu-Hsuan Yuan ◽  
Po-Xing Zheng ◽  
Fu-Hui Wu ◽  
Qiao-Wei Cheng ◽  
...  

Wild tomatoes are important genomic resources for tomato research and breeding. Development of a foreign DNA-free CRISPR-Cas delivery system has potential to mitigate public concern about genetically modified organisms. Here, we established a DNA-free protoplast regeneration and CRISPR-Cas9 genome editing system for Solanum peruvianum, an important resource for tomato introgression breeding. We generated mutants for genes involved in small interfering RNAs (siRNA) biogenesis, RNA-DEPENDENT RNA POLYMERASE 6 (SpRDR6) and SUPPRESSOR OF GENE SILENCING 3 (SpSGS3); pathogen-related peptide precursors, PATHOGENESIS-RELATED PROTEIN-1 (SpPR-1) and PROSYSTEMIN (SpProsys); and fungal resistance (MILDEW RESISTANT LOCUS O, SpMlo1) using diploid or tetraploid protoplasts derived from in vitro-grown shoots. The ploidy level of these regenerants was not affected by PEG-calcium-mediated transfection, CRISPR reagents, or the target genes. By karyotyping and whole genome sequencing analysis, we confirmed that CRISPR-Cas9 editing did not introduce chromosomal changes or unintended genome editing sites. All mutated genes in both diploid and tetraploid regenerants were heritable in the next generation. spsgs3 null T0 regenerants and sprdr6 null T1 progeny had wiry, sterile phenotypes in both diploid and tetraploid lines. The sterility of the spsgs3 null mutant was partially rescued, and fruits were obtained by grafting to wild-type stock and pollination with wild-type pollen. The resulting seeds contained the mutated alleles. Tomato yellow leaf curl virus proliferated at higher levels in spsgs3 and sprdr6 mutants than in the wild type. Therefore, this protoplast regeneration technique should greatly facilitate tomato polyploidization and enable the use of CRISPR-Cas for S. peruvianum domestication and tomato breeding.


2021 ◽  
Author(s):  
Chen-Tran Hsu ◽  
Yu-Hsuan Yuan ◽  
Yao-Cheng Lin ◽  
Steven Lin ◽  
Qiao-Wei Cheng ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Kelsey M. Reed ◽  
Bastiaan O. R. Bargmann

The development of gene-editing technology holds tremendous potential for accelerating crop trait improvement to help us address the need to feed a growing global population. However, the delivery and access of gene-editing tools to the host genome and subsequent recovery of successfully edited plants form significant bottlenecks in the application of new plant breeding technologies. Moreover, the methods most suited to achieve a desired outcome vary substantially, depending on species' genotype and the targeted genetic changes. Hence, it is of importance to develop and improve multiple strategies for delivery and regeneration in order to be able to approach each application from various angles. The use of transient transformation and regeneration of plant protoplasts is one such strategy that carries unique advantages and challenges. Here, we will discuss the use of protoplast regeneration in the application of new plant breeding technologies and review pertinent literature on successful protoplast regeneration.


2021 ◽  
Vol 3 ◽  
Author(s):  
Jin-Jun Yue ◽  
Jin-Ling Yuan ◽  
Fu-Hui Wu ◽  
Yu-Hsuan Yuan ◽  
Qiao-Wei Cheng ◽  
...  

In the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR associated protein (Cas) system, protoplasts are not only useful for rapidly validating the mutagenesis efficiency of various RNA-guided endonucleases, promoters, sgRNA designs, or Cas proteins, but can also be a platform for DNA-free gene editing. To date, the latter approach has been applied to numerous crops, particularly those with complex genomes, a long juvenile period, a tendency for heterosis, and/or self-incompatibility. Protoplast regeneration is thus a key step in DNA-free gene editing. In this report, we review the history and some future prospects for protoplast technology, including protoplast transfection, transformation, fusion, regeneration, and current protoplast applications in CRISPR/Cas-based breeding.


2021 ◽  
Vol 7 (33) ◽  
pp. eabg8466
Author(s):  
Mengxue Xu ◽  
Qingwei Du ◽  
Caihuan Tian ◽  
Ying Wang ◽  
Yuling Jiao

Cell pluripotency is fundamental to biology. It has long been known that differentiated somatic plant cells may reacquire pluripotency, but the underlying mechanism remains elusive. In many plant species, a single isolated mesophyll protoplast may regenerate into an entire plant, which is widely used in gene transformation. Here, we identified two transcription factors whose ectopic activation promotes protoplast regeneration. Furthermore, we found that their expression was induced by protoplast isolation but at a very low frequency. Using live imaging and single-cell transcriptomics, we show that isolating protoplasts induces enhanced expression variation at the genome level. Isolating protoplasts also leads to genome-wide increases in chromatin accessibility, which promotes stochastic activation of gene expression and enhances protoplast regeneration. We propose that transcriptome chaos with increased expression variability among cells creates a cellular-level evolutionary driver selecting for regenerating cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xueyuan Li ◽  
Sjur Sandgrind ◽  
Oliver Moss ◽  
Rui Guan ◽  
Emelie Ivarson ◽  
...  

Difficulty in protoplast regeneration is a major obstacle to apply the CRISPR/Cas9 gene editing technique effectively in research and breeding of rapeseed (Brassica napus L.). The present study describes for the first time a rapid and efficient protocol for the isolation, regeneration and transfection of protoplasts of rapeseed cv. Kumily, and its application in gene editing. Protoplasts isolated from leaves of 3–4 weeks old were cultured in MI and MII liquid media for cell wall formation and cell division, followed by subculture on shoot induction medium and shoot regeneration medium for shoot production. Different basal media, types and combinations of plant growth regulators, and protoplast culture duration on each type of media were investigated in relation to protoplast regeneration. The results showed that relatively high concentrations of NAA (0.5 mg l−1) and 2,4-D (0.5 mg l−1) in the MI medium were essential for protoplasts to form cell walls and maintain cell divisions, and thereafter auxin should be reduced for callus formation and shoot induction. For shoot regeneration, relatively high concentrations of cytokinin were required, and among all the combinations tested, 2.2 mg l−1 TDZ in combination with auxin 0.5 mg l−1 NAA gave the best result with up to 45% shoot regeneration. Our results also showed the duration of protoplast culture on different media was critical, as longer culture durations would significantly reduce the shoot regeneration frequency. In addition, we have optimized the transfection protocol for rapeseed. Using this optimized protocol, we have successfully edited the BnGTR genes controlling glucosinolate transport in rapeseed with a high mutation frequency.


2021 ◽  
Author(s):  
Chen-Tran Hsu ◽  
Yu-Hsuan Yuan ◽  
Yao-Cheng Lin ◽  
Steven Lin ◽  
Qiao-Wei Cheng ◽  
...  

AbstractGenome editing requires insertion of DNA sequences into specific locations. Protocols involving clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins rely on homology-directed repair, require laborious vector construction, and have low efficiency. DNA oligonucleotides can be used as donors for targeted insertion via nonhomologous end joining. Our simple protocol eliminates the need for expensive equipment and vector construction by using polyethylene glycol to deliver non-modified single-stranded DNA oligonucleotides and CRISPR-Cas9 ribonucleoprotein into protoplasts. We achieved targeted insertion frequencies of up to 50.0% in Nicotiana benthamiana and 13.6% in rapid cycling Brassica oleracea without antibiotic selection. Using a 60-nt donor containing 27 nt in each homologous arm, 6 of 22 regenerated plants showed targeted insertions, and 1 contained a precise insertion of a 6-bp EcoRI site. Whole-genome sequencing showed that the DNA inserted only in the targeted positions, and genetic analysis showed that the inserted sequences transmitted to the next generation.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yeong Yeop Jeong ◽  
Hun-Young Lee ◽  
Suk Weon Kim ◽  
Yoo-Sun Noh ◽  
Pil Joon Seo

Abstract Background Plants have a remarkable reprogramming potential, which facilitates plant regeneration, especially from a single cell. Protoplasts have the ability to form a cell wall and undergo cell division, allowing whole plant regeneration. With the growing need for protoplast regeneration in genetic engineering and genome editing, fundamental studies that enhance our understanding of cell cycle re-entry, pluripotency acquisition, and de novo tissue regeneration are essential. To conduct these studies, a reproducible and efficient protoplast regeneration method using model plants is necessary. Results Here, we optimized cell and tissue culture methods for improving protoplast regeneration efficiency in Arabidopsis thaliana. Protoplasts were isolated from whole seedlings of four different Arabidopsis ecotypes including Columbia (Col-0), Wassilewskija (Ws-2), Nossen (No-0), and HR (HR-10). Among these ecotypes, Ws-2 showed the highest potential for protoplast regeneration. A modified thin alginate layer was applied to the protoplast culture at an optimal density of 1 × 106 protoplasts/mL. Following callus formation and de novo shoot regeneration, the regenerated inflorescence stems were used for de novo root organogenesis. The entire protoplast regeneration process was completed within 15 weeks. The in vitro regenerated plants were fertile and produced morphologically normal progenies. Conclusion The cell and tissue culture system optimized in this study for protoplast regeneration is efficient and reproducible. This method of Arabidopsis protoplast regeneration can be used for fundamental studies on pluripotency establishment and de novo tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document