scholarly journals Molecular Evidence for an Active Microbial Methane Cycle in Subsurface Serpentinite-Hosted Groundwaters in the Samail Ophiolite, Oman

2020 ◽  
Vol 87 (2) ◽  
Author(s):  
Emily A. Kraus ◽  
Daniel Nothaft ◽  
Blake W. Stamps ◽  
Kaitlin R. Rempfert ◽  
Eric T. Ellison ◽  
...  

ABSTRACT Serpentinization can generate highly reduced fluids replete with hydrogen (H2) and methane (CH4), potent reductants capable of driving microbial methanogenesis and methanotrophy, respectively. However, CH4 in serpentinized waters is thought to be primarily abiogenic, raising key questions about the relative importance of methanogens and methanotrophs in the production and consumption of CH4 in these systems. Herein, we apply molecular approaches to examine the functional capability and activity of microbial CH4 cycling in serpentinization-impacted subsurface waters intersecting multiple rock and water types within the Samail Ophiolite of Oman. Abundant 16S rRNA genes and transcripts affiliated with the methanogenic genus Methanobacterium were recovered from the most alkaline (pH, >10), H2- and CH4-rich subsurface waters. Additionally, 16S rRNA genes and transcripts associated with the aerobic methanotrophic genus Methylococcus were detected in wells that spanned varied fluid geochemistry. Metagenomic sequencing yielded genes encoding homologs of proteins involved in the hydrogenotrophic pathway of microbial CH4 production and in microbial CH4 oxidation. Transcripts of several key genes encoding methanogenesis/methanotrophy enzymes were identified, predominantly in communities from the most hyperalkaline waters. These results indicate active methanogenic and methanotrophic populations in waters with hyperalkaline pH in the Samail Ophiolite, thereby supporting a role for biological CH4 cycling in aquifers that undergo low-temperature serpentinization. IMPORTANCE Serpentinization of ultramafic rock can generate conditions favorable for microbial methane (CH4) cycling, including the abiotic production of hydrogen (H2) and possibly CH4. Systems of low-temperature serpentinization are geobiological targets due to their potential to harbor microbial life and ubiquity throughout Earth’s history. Biomass in fracture waters collected from the Samail Ophiolite of Oman, a system undergoing modern serpentinization, yielded DNA and RNA signatures indicative of active microbial methanogenesis and methanotrophy. Intriguingly, transcripts for proteins involved in methanogenesis were most abundant in the most highly reacted waters that have hyperalkaline pH and elevated concentrations of H2 and CH4. These findings suggest active biological methane cycling in serpentinite-hosted aquifers, even under extreme conditions of high pH and carbon limitation. These observations underscore the potential for microbial activity to influence the isotopic composition of CH4 in these systems, which is information that could help in identifying biosignatures of microbial activity on other planets.

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yusuke Okazaki ◽  
Shohei Fujinaga ◽  
Michaela M. Salcher ◽  
Cristiana Callieri ◽  
Atsushi Tanaka ◽  
...  

Abstract Background Freshwater ecosystems are inhabited by members of cosmopolitan bacterioplankton lineages despite the disconnected nature of these habitats. The lineages are delineated based on > 97% 16S rRNA gene sequence similarity, but their intra-lineage microdiversity and phylogeography, which are key to understanding the eco-evolutional processes behind their ubiquity, remain unresolved. Here, we applied long-read amplicon sequencing targeting nearly full-length 16S rRNA genes and the adjacent ribosomal internal transcribed spacer sequences to reveal the intra-lineage diversities of pelagic bacterioplankton assemblages in 11 deep freshwater lakes in Japan and Europe. Results Our single nucleotide-resolved analysis, which was validated using shotgun metagenomic sequencing, uncovered 7–101 amplicon sequence variants for each of the 11 predominant bacterial lineages and demonstrated sympatric, allopatric, and temporal microdiversities that could not be resolved through conventional approaches. Clusters of samples with similar intra-lineage population compositions were identified, which consistently supported genetic isolation between Japan and Europe. At a regional scale (up to hundreds of kilometers), dispersal between lakes was unlikely to be a limiting factor, and environmental factors or genetic drift were potential determinants of population composition. The extent of microdiversification varied among lineages, suggesting that highly diversified lineages (e.g., Iluma-A2 and acI-A1) achieve their ubiquity by containing a consortium of genotypes specific to each habitat, while less diversified lineages (e.g., CL500-11) may be ubiquitous due to a small number of widespread genotypes. The lowest extent of intra-lineage diversification was observed among the dominant hypolimnion-specific lineage (CL500-11), suggesting that their dispersal among lakes is not limited despite the hypolimnion being a more isolated habitat than the epilimnion. Conclusions Our novel approach complemented the limited resolution of short-read amplicon sequencing and limited sensitivity of the metagenome assembly-based approach, and highlighted the complex ecological processes underlying the ubiquity of freshwater bacterioplankton lineages. To fully exploit the performance of the method, its relatively low read throughput is the major bottleneck to be overcome in the future.


2013 ◽  
Vol 80 (5) ◽  
pp. 1684-1691 ◽  
Author(s):  
Baozhan Wang ◽  
Yan Zheng ◽  
Rong Huang ◽  
Xue Zhou ◽  
Dongmei Wang ◽  
...  

ABSTRACTAll cultivated ammonia-oxidizing archaea (AOA) within theNitrososphaeracluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence ofNitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth ofNitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis ofamoAgenes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the “heavy” DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that13CO2assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both13C-labeledamoAand 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strainsNitrososphaera viennensisEN76 and JG1 within theNitrososphaeracluster. Our results provide strong evidence for the adaptive growth ofNitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated.


2006 ◽  
Vol 72 (9) ◽  
pp. 5957-5962 ◽  
Author(s):  
Ellen Kandeler ◽  
Kathrin Deiglmayr ◽  
Dagmar Tscherko ◽  
David Bru ◽  
Laurent Philippot

ABSTRACT Quantitative PCR of denitrification genes encoding the nitrate, nitrite, and nitrous oxide reductases was used to study denitrifiers across a glacier foreland. Environmental samples collected at different distances from a receding glacier contained amounts of 16S rRNA target molecules ranging from 4.9 � 105 to 8.9 � 105 copies per nanogram of DNA but smaller amounts of narG, nirK, and nosZ target molecules. Thus, numbers of narG, nirK, nirS, and nosZ copies per nanogram of DNA ranged from 2.1 � 103 to 2.6 � 104, 7.4 � 102 to 1.4 � 103, 2.5 � 102 to 6.4 � 103, and 1.2 � 103 to 5.5 � 103, respectively. The densities of 16S rRNA genes per gram of soil increased with progressing soil development. The densities as well as relative abundances of different denitrification genes provide evidence that different denitrifier communities develop under primary succession: higher percentages of narG and nirS versus 16S rRNA genes were observed in the early stage of primary succession, while the percentages of nirK and nosZ genes showed no significant increase or decrease with soil age. Statistical analyses revealed that the amount of organic substances was the most important factor in the abundance of eubacteria as well as of nirK and nosZ communities, and copy numbers of these two genes were the most important drivers changing the denitrifying community along the chronosequence. This study yields an initial insight into the ecology of bacteria carrying genes for the denitrification pathway in a newly developing alpine environment.


Author(s):  
Atsuko Ueki ◽  
Akio Tonouchi ◽  
Nobuo Kaku ◽  
Katsuji Ueki

An obligately anaerobic bacterial strain (CTTWT) belonging to the family Lachnospiraceae within the class Clostridia was isolated from an anoxic soil sample subjected to biological or reductive soil disinfestation. Cells of the strain were Gram-stain-positive, short rods with peritrichous flagella. The strain was saccharolytic and decomposed polysaccharides, chitin, xylan and β-1,3-glucan. Strain CTTWT decomposed cell biomass and cell-wall preparations of an ascomycete plant pathogen, Fusarium oxysporum f. sp. spinaciae. The strain produced acetate, ethanol, H2 and CO2 as fermentation products from the utilized substrates. The major cellular fatty acids of the strain were C16 : 1 ω7c dimethylacetal (DMA), C16 : 0 DMA and C18 : 1 ω7c DMA. The closely related species of strain CTTWT based on the 16S rRNA gene sequences were species in the genus Anaerocolumna with sequence similarities of 95.2–97.6 %. Results of genome analyses of strain CTTWT indicated that the genome size of the strain was 5.62 Mb and the genomic DNA G+C content was 38.3 mol%. Six 16S rRNA genes with five different sequences from each other were found in the genome. Strain CTTWT had genes encoding chitinase, xylanase, cellulase, β-glucosidase and nitrogenase as characteristic genes in the genome. Homologous genes encoding these proteins were found in the genomes of the related Anaerocolumna species, but the genomic and phenotypic properties of strain CTTWT were distinct from them. Based on the phylogenetic, genomic and phenotypic analyses, the name Anaerocolumna chitinilytica sp. nov., in the family Lachnospiraceae is proposed for strain CTTWT (=NBRC 112102T=DSM 110036T).


Genetics ◽  
1992 ◽  
Vol 130 (3) ◽  
pp. 399-410 ◽  
Author(s):  
S Mylvaganam ◽  
P P Dennis

Abstract The halophilic archaebacterium, Haloarcula marismortui, contains two nonadjacent ribosomal RNA operons, designated rrnA and rrnB, in its genome. The 16S rRNA genes within these operons are 1472 nucleotides in length and differ by nucleotide substitutions at 74 positions. The substitutions are not uniformly distributed but rather are localized within three domains of 16S rRNA; more than two-thirds of the differences occur within the domain bounded by nucleotides 508 and 823. This domain is known to be important for P site binding of aminoacylated tRNA and for 30-50S subunit association. Using S1 nuclease protection, it has been shown that the 16S rRNAs transcribed from both operons are equally represented in the functional 70S ribosome population. Comparison of these two H. marismortui sequences to the 16S gene sequences from related halophilic genera suggests that (i) in diverging genera, mutational differences in 16S gene sequences are not clustered but rather are more generally distributed throughout the length of the 16S sequence, and (ii) the rrnB sequence, particularly within the 508-823 domain, is more different from the out group sequences than is the rrnA sequence. Several possible explanations for the evolutionary origin and maintenance of this sequence heterogeneity within 16S rRNA of H. marismortui are discussed.


Author(s):  
Yusuke Okazaki ◽  
Shohei Fujinaga ◽  
Michaela M. Salcher ◽  
Cristiana Callieri ◽  
Atsushi Tanaka ◽  
...  

AbstractFreshwater ecosystems are inhabited by members of cosmopolitan bacterioplankton lineages despite the disconnected nature of these habitats. The lineages are delineated based on >97% 16S rRNA gene sequence similarity, but their intra-lineage microdiversity and phylogeography, which are key to understanding the eco-evolutional processes behind their ubiquity, remain unresolved. Here, we applied long-read amplicon sequencing targeting nearly full-length 16S rRNA genes and the adjacent ribosomal internal transcribed spacer sequences to reveal the intra-lineage diversities of pelagic bacterioplankton assemblages in 11 deep freshwater lakes in Japan and Europe. Our single nucleotide-resolved analysis, which was validated using shotgun metagenomic sequencing, uncovered 7–101 amplicon sequence variants for each of the 11 predominant bacterial lineages and demonstrated sympatric, allopatric, and temporal microdiversities that could not be resolved through conventional approaches. Clusters of samples with similar intra-lineage population compositions were identified, which consistently supported genetic isolation between Japan and Europe. At a regional scale (up to hundreds of kilometers), dispersal between lakes was unlikely to be a limiting factor, and environmental factors were potential determinants of population composition. The extent of microdiversification varied among lineages, suggesting that highly diversified lineages (e.g., Iluma-A2 and acI-A1) achieve their ubiquity by containing a consortium of genotypes specific to each habitat, while less diversified lineages (e.g., CL500-11) may be ubiquitous due to a small number of widespread genotypes. The lowest extent of intra-lineage diversification was observed among the dominant hypolimnion-specific lineage (CL500-11), suggesting that their dispersal among lakes is not limited despite the hypolimnion being a more isolated habitat than the epilimnion. Our novel approach complemented the limited resolution of short-read amplicon sequencing and limited sensitivity of the metagenome assembly-based approach, and highlighted the complex ecological processes underlying the ubiquity of freshwater bacterioplankton lineages.


2014 ◽  
Vol 60 (5) ◽  
pp. 277-286 ◽  
Author(s):  
Ran Yu ◽  
Barth F. Smets ◽  
Ping Gan ◽  
Allison A. MacKay ◽  
Joerg Graf

We investigated the seasonal and spatial variation in activity and density of the metabolically active in situ microbial community (AIMC) at a landfill leachate-impacted groundwater – surface water interface (GSI). A series of AIMC traps were designed and implemented for AIMC sampling and microbial activity and density examinations. Measurements were made not only at the level of bacterial domain but also at the levels of alphaproteobacterial Rhizobiales order and gammaproteobacterial Pseudomonas genus, both of which included a large number of iron-oxidizing bacteria as revealed from previous analysis. Consistently higher microbial activities with less variation in depth were measured in the AIMC traps than in the ambient sediments. Flood disturbance appeared to control AIMC activity distributions at the gradually elevated GSI. The highest AIMC activities were generally obtained from locations closest to the free surface water boundary except during the dry season when microbial activities were similar across the entire GSI. A clone library of AIMC 16S rRNA genes was constructed, and it confirmed the predominant role of the targeted alphaproteobacterial group in AIMC activity and composition. This taxon constituted 2%–14% of all bacteria with similar activity distribution profiles. The Pseudomonas group occupied only 0.1‰–0.5‰ of the total bacterial density, but its activity was 27 times higher than the bacterial average. Of the 16S rRNA sequences in the AIMC clone library, 7.5% were phylogenetically related to putative IOB, supporting the occurrence and persistence of active microbial iron oxidation across the studied iron-rich GSI ecosystem.


2004 ◽  
Vol 70 (4) ◽  
pp. 2110-2118 ◽  
Author(s):  
Kazuhito Itoh ◽  
Yoshiko Tashiro ◽  
Kazuko Uobe ◽  
Yoichi Kamagata ◽  
Kousuke Suyama ◽  
...  

ABSTRACT The distribution of tfdAα and cadA, genes encoding 2,4-dichlorophenoxyacetate (2,4-D)-degrading proteins which are characteristic of the 2,4-D-degrading Bradyrhizobium sp. isolated from pristine environments, was examined by PCR and Southern hybridization in several Bradyrhizobium strains including type strains of Bradyrhizobium japonicum USDA110 and Bradyrhizobium elkanii USDA94, in phylogenetically closely related Agromonas oligotrophica and Rhodopseudomonas palustris, and in 2,4-D-degrading Sphingomonas strains. All strains showed positive signals for tfdAα, and its phylogenetic tree was congruent with that of 16S rRNA genes in α-Proteobacteria, indicating evolution of tfdAα without horizontal gene transfer. The nucleotide sequence identities between tfdAα and canonical tfdA in β- and γ-Proteobacteria were 46 to 57%, and the deduced amino acid sequence of TfdAα revealed conserved residues characteristic of the active site of α-ketoglutarate-dependent dioxygenases. On the other hand, cadA showed limited distribution in 2,4-D-degrading Bradyrhizobium sp. and Sphingomonas sp. and some strains of non-2,4-D-degrading B. elkanii. The cadA genes were phylogenetically separated between 2,4-D-degrading and nondegrading strains, and the cadA genes of 2,4-D degrading strains were further separated between Bradyrhizobium sp. and Sphingomonas sp., indicating the incongruency of cadA with 16S rRNA genes. The nucleotide sequence identities between cadA and tftA of 2,4,5-trichlorophenoxyacetate-degrading Burkholderia cepacia AC1100 were 46 to 53%. Although all root nodule Bradyrhizobium strains were unable to degrade 2,4-D, three strains carrying cadA homologs degraded 4-chlorophenoxyacetate with the accumulation of 4-chlorophenol as an intermediate, suggesting the involvement of cadA homologs in the cleavage of the aryl ether linkage. Based on codon usage patterns and GC content, it was suggested that the cadA genes of 2,4-D-degrading and nondegrading Bradyrhizobium spp. have different origins and that the genes would be obtained in the former through horizontal gene transfer.


2015 ◽  
Vol 41 (1) ◽  
pp. 51-58
Author(s):  
Mohammad Shamimul Alam ◽  
Hawa Jahan ◽  
Rowshan Ara Begum ◽  
Reza M Shahjahan

Heteropneustesfossilis, Clariasbatrachus and C. gariepinus are three major catfishes ofecological and economic importance. Identification of these fish species becomes aproblem when the usual external morphological features of the fish are lost or removed,such as in canned fish. Also, newly hatched fish larva is often difficult to identify. PCRsequencingprovides accurate alternative means of identification of individuals at specieslevel. So, 16S rRNA genes of three locally collected catfishes were sequenced after PCRamplification and compared with the same gene sequences available from othergeographical regions. Multiple sequence alignment of the 16S rRNA gene fragments ofthe catfish species has revealed polymorphic sites which can be used to differentiate thesethree species from one another and will provide valuable insight in choosing appropriaterestriction enzymes for PCR-RFLP based identification in future. Asiat. Soc. Bangladesh, Sci. 41(1): 51-58, June 2015


Sign in / Sign up

Export Citation Format

Share Document